The Effects of Atoh8 on Postnatal Murine Neurogenesis

Author:

Cuhalik Dilek,Gellisch Morris,Morosan-Puopolo Gabriela,Saberi Darius

Abstract

Introduction: Basic helix-loop-helix (bHLH) transcription factors are expressed in various organs and are involved in diverse developmental processes. The mouse atonal homolog 8 (Atoh8), a bHLH transcription factor, plays a crucial role in various developmental processes, especially as a regulator of neurogenesis in the retina. Besides, Atoh8 expression has been observed in the central nervous system. The function of Atoh8 during the postnatal neurogenesis is still unclear. Methods: This study focuses on elucidating the impact of Atoh8 on postnatal neurogenesis in the brain, particularly in selected regions: the subventricular zone (SVZ), rostral migratory stream (RMS), and olfactory bulb (OB), across different life stages, using male homozygous Atoh8-knockout (M6KO) mice. Our morphometric analysis is based on immunohistochemically labeled markers for neuroblasts (doublecortin) and proliferation (phospho-histone H3, PHH3) as well as pan neuronal markers. Results: In Atoh8−/− mice, alteration in the postnatal neurogenesis can be observed. Immunohistochemical analysis revealed a significant reduction in doublecortin-positive neuroblasts within the SVZ of neonatal M6KO mice compared to wild-type mice. Interestingly, no differences in cell number and distribution were observed in the subsequent migration of neuroblasts through the RMS to the OB. Proliferating PHH3-positive neuronal progenitor cells were significantly diminished in the proliferation rate in both the SVZ and RMS of neonatal and young M6KO mice. Furthermore, in the glomerular layer of the OB, significantly fewer neurons were detected in the neonatal stage. Conclusion: In conclusion, Atoh8 emerges as a positive regulator of postnatal neurogenesis in the brain. Its role encompasses the promotion of neuroblast formation, modulation of proliferation rates, differentiation, and maintenance of mature neurons. Understanding the intricacies of Atoh8 function provides valuable insights into the complex regulatory mechanisms governing neurogenesis.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3