Microvessel Density: Integrating Sex-Based Differences and Elevated Cardiovascular Risks in Metabolic Syndrome

Author:

Wong Angelina,Chen Shu Qing,Halvorson Brayden D.,Frisbee Jefferson C.

Abstract

Metabolic syndrome (MetS) is a complex pathological state consisting of metabolic risk factors such as hypertension, insulin resistance, and obesity. The interconnectivity of cellular pathways within various biological systems suggests that each individual component of MetS may share common pathological sources. Additionally, MetS is closely associated with vasculopathy, including a reduction in microvessel density (MVD) (rarefaction) and elevated risk for various cardiovascular diseases. Microvascular impairments may contribute to perfusion-demand mismatch, where local metabolic needs are insufficiently met due to the lack of nutrient and oxygen supply, thus creating pathological positive-feedback loops and furthering the progression of disease. Sexual dimorphism is evident in these underlying cellular mechanisms, which places males and females at different levels of risk for cardiovascular disease and acute ischemic events. Estrogen exhibits protective effects on the endothelium of pre-menopausal women, while androgens may be antagonistic to cardiovascular health. This review examines MetS and its influences on MVD, as well as sex differences relating to the components of MetS and cardiovascular risk profiles. Finally, translational relevance and interventions are discussed in the context of these sex-based differences.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference97 articles.

1. Serné EH, de Jongh RT, Eringa EC, Ijzerman RG, de Boer MP, Stehouwer CD. Microvascular dysfunction: causative role in the association between hypertension, insulin resistance and the metabolic syndrome? Essays Biochem. 2006;42:163–76.

2. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104(6):735–40.

3. Huxley VH, Kemp SS. Sex-specific characteristics of the microcirculation. Adv Exp Med Biol. 2018;1065:307–28.

4. Langsdorf LJ, Zydney AL. Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis. J Biomed Mater Res. 1994;28(5):573–82.

5. Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Brock RW, Olfert IM, et al. Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. Am J Physiol Heart Circ Physiol. 2014;307(12):H1714–28.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3