Author:
Seksik Philippe,Landman Cécilia
Abstract
The human gut contains 1014 bacteria and many other micro-organisms such as Archaea, viruses and fungi. This gut microbiota has co-evolved with host determinants through symbiotic and co-dependent relationships. Bacteria, which represent 10 times the number of human cells, form the most depicted part of this black box owing to new tools. Re-evaluating the gut microbiota showed how this entity participates in gut physiology and beyond this in human health. Studying and handling this real ‘hidden organ' remains a challenge for clinicians. In this review, we aimed to bring information about gut microbiota, its structure, its roles and the way to capture and measure it. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to 4 major phyla. Besides its biodiversity, the major characteristics of gut microbiota are stability over time and resilience after perturbation. In pathological situations, dysbiosis (i.e. imbalance in gut microbiota composition) is observed with a loss in overall diversity. Dysbiosis associated with inflammatory bowel disease was specified with the reduction in biodiversity, the decreased representation of different taxa in the Firmicutes phylum and an increase in Gammaproteobacteria. Beyond depicting gut microbial composition, metagenomics allows the description of the combined genomes of the microorganisms present in the gut, giving access to their potential functions. In fact, each individual overall microbial metagenome outnumbers the size of human genome by a factor of 150. Besides a functional core in which there is redundancy for mandatory functions assuring the robustness of the ecosystem, human gut contains an important diversity and high number of non-redundant bacterial genes. Clinical data, treatment and all the factors able to influence microbiome should enter integrated big data sets to put in light pathways of interplay within the supra organism composed of gut microbiome and host. A better understanding of dynamics within human gut microbiota and microbes-host interaction will allow new insight into gut pathophysiology especially regarding resilience mechanisms and dysbiosis onset and maintenance. This will lead to description of biomarkers of diseases, development of new probiotics/prebiotics and new therapies.
Subject
Gastroenterology,General Medicine
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献