Understanding Microbiome Data: A Primer for Clinicians

Author:

Seksik Philippe,Landman Cécilia

Abstract

The human gut contains 1014 bacteria and many other micro-organisms such as Archaea, viruses and fungi. This gut microbiota has co-evolved with host determinants through symbiotic and co-dependent relationships. Bacteria, which represent 10 times the number of human cells, form the most depicted part of this black box owing to new tools. Re-evaluating the gut microbiota showed how this entity participates in gut physiology and beyond this in human health. Studying and handling this real ‘hidden organ' remains a challenge for clinicians. In this review, we aimed to bring information about gut microbiota, its structure, its roles and the way to capture and measure it. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to 4 major phyla. Besides its biodiversity, the major characteristics of gut microbiota are stability over time and resilience after perturbation. In pathological situations, dysbiosis (i.e. imbalance in gut microbiota composition) is observed with a loss in overall diversity. Dysbiosis associated with inflammatory bowel disease was specified with the reduction in biodiversity, the decreased representation of different taxa in the Firmicutes phylum and an increase in Gammaproteobacteria. Beyond depicting gut microbial composition, metagenomics allows the description of the combined genomes of the microorganisms present in the gut, giving access to their potential functions. In fact, each individual overall microbial metagenome outnumbers the size of human genome by a factor of 150. Besides a functional core in which there is redundancy for mandatory functions assuring the robustness of the ecosystem, human gut contains an important diversity and high number of non-redundant bacterial genes. Clinical data, treatment and all the factors able to influence microbiome should enter integrated big data sets to put in light pathways of interplay within the supra organism composed of gut microbiome and host. A better understanding of dynamics within human gut microbiota and microbes-host interaction will allow new insight into gut pathophysiology especially regarding resilience mechanisms and dysbiosis onset and maintenance. This will lead to description of biomarkers of diseases, development of new probiotics/prebiotics and new therapies.

Publisher

S. Karger AG

Subject

Gastroenterology,General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3