Tissue Transglutaminase Impairs HTR-8/SVneo Trophoblast Cell Invasion via the PI3K/AKT Signaling Pathway

Author:

Cheng Mi,Liu Zequn,Ji Wanqing,Zheng Jie,Zeng Huiqian,Guo Fang,He Ping

Abstract

<b><i>Objectives:</i></b> The pathogenesis of preeclampsia (PE) is associated with impaired trophoblast invasion, which results in placental insufficiency. Our earlier studies demonstrated that tissue transglutaminase (tTG) is highly expressed in human PE serum. However, whether tTG participates in trophoblast invasion remains unclear. The aim of the present study was to determine the role and mechanism of tTG in regulating matrix metalloproteinase (MMP)-2/MMP-9 expression to reduce trophoblast invasiveness in PE. <b><i>Methods:</i></b> HTR-8/SVneo cells were transfected with a lentivirus vector and small interfering RNA targeting tTG. The protein level was detected by Western blotting. Cell proliferation and apoptosis were assessed by MTS and flow cytometry assays, respectively. Cell invasion was investigated by Transwell assay. In addition, the influence of tTG on PI3K and AKT mRNA levels in HTR-8/SVneo cells was evaluated using reverse transcription-quantitative PCR. <b><i>Results:</i></b> tTG-overexpression inhibited HTR-8/SVneo cell proliferation and invasion and promoted apoptosis. In addition, upregulation of tTG induced an increase of PI3K and phosphorylated AKT and a decrease of MMP-2 and MMP-9 expression. tTG-knockdown significantly promoted the proliferation and invasion of HTR-8/SVneo cells and inhibited the apoptosis. Furthermore, the PI3K expression level was reduced, and the MMP-2/MMP-9 protein levels were increased. <b><i>Conclusion:</i></b> Taken together, the present study demonstrated that tTG-overexpression inhibited HTR-8/SVneo cell invasion via reducing the expression of MMP-2 and MMP-9 by activating PI3K/AKT signaling pathway, which may lead to the occurrence or development of PE. The present data provide new insights into modulation of tTG expression as a potential therapeutic target for PE.

Publisher

S. Karger AG

Subject

Obstetrics and Gynecology,Reproductive Medicine

Reference38 articles.

1. Kwiatkowski S, Kwiatkowska E, Rzepka R, Kurkiewicz V, Mikołajek-Bedner W, Torbè A. Development of a focal segmental glomerulosclerosis after pregnancy complicated by preeclampsia: case report and review of literature. J Matern Fetal Neonatal Med. 2016;29(10):1566–9.

2. Jia RZ, Ding GC, Gu CM, Huang T, Rui C, Wang YX, et al. CDX2 enhances HTR-8/SVneo trophoblast cell invasion by altering the expression of matrix metalloproteinases. Cell Physiol Biochem. 2014;34(3):628–36.

3. Shen Z, Wu Y, Chen X, Chang X, Zhou Q, Zhou J, et al. Decreased maternal serum 2-methoxyestradiol levels are associated with the development of preeclampsia. Cell Physiol Biochem. 2014;34(6):2189–99.

4. Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol. 2012;294:1.

5. Facchiano F, Facchiano A, Facchiano AM. The role of transglutaminase-2 and its substrates in human diseases. Front Biosci. 2006;11:1758–73.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3