Loss of GFAP and Vimentin Does Not Affect Peri-Infarct Depolarizations after Focal Cerebral Ischemia

Author:

Zheng Zelong,Yi Xuxia,Lv Jianping

Abstract

Peri-infarct depolarization (PID), one kind of spreading depolarization, contributes to infarct volume enlargement after ischemic stroke. Astrocytes participate in PIDs by various mechanisms. The roles of glial fibrillary acidic protein (GFAP) and vimentin (Vim), intermediate filament proteins in astrocytes, however, in PIDs induction and propagation remain unknown. Middle cerebral artery occlusion (MCAO) model was made in 9 GFAP−/−Vim−/− and 9 wild-type (WT) C57BL/6 mice. Using 4-wavelength optical intrinsic signal imaging (OIS), we identified PIDs as consistent, red and blue interaction waves in the cortical reflectance that slowly propagated peripherally from the origin site. Five propagation patterns of PIDs were observed after MCAO in mice, namely, latero-medial, medial-lateral, rostro-caudal, caudo-rostral, and collision. Additionally, the frequency, propagation velocity, and duration of PIDs between GFAP−/−Vim−/− and WT mice were not significantly different (p > 0.05). Furthermore, no significant difference was found in infarct volume and brain edema between the two groups. In conclusion, the 4-wavelength OIS system allows acquisition of high temporal-spatial resolution color images for analyzing temporal-spatial characteristics of PIDs in detail. GFAP and Vim in astrocytes are not involved in PIDs after MCAO in mice.

Publisher

S. Karger AG

Subject

Neurology (clinical),Neurology

Reference24 articles.

1. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117(Pt 1):199–210.

2. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17(4):439–47.

3. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab. 2011;31(1):17–35.

4. Dreier JP, Körner K, Ebert N, Görner A, Rubin I, Back T, et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-l-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab. 1998;18(9):978–90.

5. Nakamura H, Strong AJ, Dohmen C, Sakowitz OW, Vollmar S, Sué M, et al. Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain. 2010;133(Pt 7):1994–2006.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3