Clinical Significance of Apela in Acute Cardiorenal Insuffiency of Chronic Heart Failure

Author:

Zong Yani,Wang Yajie,Hu Yuexin,Wang Zhi

Abstract

Introduction: Apela has a wide range of biological effects on the cardiovascular system, but the changes and significance of endogenous Apela in patients with chronic heart failure (CHF) and acute deterioration of cardiac and renal function are unclear. Methods: A total of 69 patients with stable CHF combined with well-preserved renal function were enrolled and followed for 12 months. The effects of Apela on human renal glomerular endothelial cells (hRGEC), human glomerular mesangial cells (hMC), and human renal tubular epithelial cells (HK-2) were observed. Results: Serum Apela concentration was positively correlated with NYHA class (r = 0.711) and N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration (r = 0.303) but negatively correlated with left ventricular ejection fraction (LVEF) (r = −0.374) and 6-min walk distance (r = −0.860) in patients with stable CHF. Twenty-one patients experiencing deterioration of renal and cardiac function were diagnosed with cardiorenal syndrome (CRS) during the follow-up period. In addition, the serum Apela, as well as the difference in Apela between stable and worsening phases (ΔApela), was correlated with the estimated glomerular filtration rate (eGFR) and ΔeGFR in patients with CRS. Apela significantly inhibited the upregulated expression of MCP-1 and TNF-α induced by angiotensin II (AngII) in hRGEC, hMC, and HK-2 cells. Apela inhibited the adhesion of THP-1 cells to hRGEC and promoted the tubular formation of hRGEC. Moreover, Apela enhanced the expression of MMP-9 in hMC but inhibited the upregulated expression of α-SMA and vimentin in HK-2 cells by AngII. Conclusion: This study suggests that the level of Apela can be used to diagnose heart failure and assess the severity of cardiac dysfunction in patients with stable CHF, and its dynamic changes can be used to evaluate the damage to renal function in patients with CRS. Apela plays multiple protective effects on renal cells, highlighting its clinical application prospect in the prevention and treatment of CRS.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3