Graphic Intelligent Diagnosis of Hypoxic-Ischemic Encephalopathy Using MRI-Based Deep Learning Model

Author:

Tian TianORCID,Gan Tongjia,Chen Jun,Lu Jun,Zhang Guiling,Zhou Yiran,Li Jia,Shao Haoyue,Liu Yufei,Zhu Hongquan,Wu Di,Jiang Chengcheng,Shao Jianbo,Shi Jingjing,Yang Wenzhong,Zhu WenzhenORCID

Abstract

Introduction: Heterogeneous MRI manifestations restrict the efficiency and consistency of neuroradiologists in diagnosing hypoxic-ischemic encephalopathy (HIE) due to complex injury patterns. This study aimed to develop and validate an intelligent HIE identification model (termed as DLCRN, deep learning clinical-radiomics nomogram) based on conventional structural MRI and clinical characteristics. Methods: In this retrospective case-control study, full-term neonates with HIE and healthy controls were collected in two different medical centers from January 2015 to December 2020. Multivariable logistic regression analysis was implemented to establish the DLCRN model based on conventional MRI sequences and clinical characteristics. Discrimination, calibration, and clinical applicability were used to evaluate the model in the training and validation cohorts. Grad-class activation map algorithm was implemented to visualize the DLCRN. Results: 186 HIE patients and 219 healthy controls were assigned to the training, internal validation, and independent validation cohorts. Birthweight was incorporated with deep radiomics signatures to create the final DLCRN model. The DLCRN model achieved better discriminatory power than simple radiomics models, with an area under the curve (AUC) of 0.868, 0.813, and 0.798 in the training, internal validation, and independent validation cohorts, respectively. The DLCRN model was well calibrated and has clinical potential. Visualization of the DLCRN highlighted the lesion areas that conformed to radiological identification. Conclusion: Visualized DLCRN may be a useful tool in the objective and quantitative identification of HIE. Scientific application of the optimized DLCRN model may save time for screening early mild HIE, improve the consistency of HIE diagnosis, and guide timely clinical management.

Publisher

S. Karger AG

Subject

Developmental Biology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3