A Novel Validated Real-World Dataset for the Diagnosis of Multiclass Serous Effusion Cytology according to the International System and Ground-Truth Validation Data

Author:

Abd-Almoniem Esraa,Abd-Alsabour Nadia,Elsheikh Samar,Mostafa Rasha R.,Elesawy Yasmine Fathy

Abstract

<b><i>Introduction:</i></b> The application of artificial intelligence (AI) algorithms in serous fluid cytology is lacking due to the deficiency in standardized publicly available datasets. Here, we develop a novel public serous effusion cytology dataset. Furthermore, we apply AI algorithms on it to test its diagnostic utility and safety in clinical practice. <b><i>Methods:</i></b> The work is divided into three phases. Phase 1 entails building the dataset based on the multitiered evidence-based classification system proposed by the International System (TIS) of serous fluid cytology along with ground-truth tissue diagnosis for malignancy. To ensure reliable results of future AI research on this dataset, we carefully consider all the steps of the preparation and staining from a real-world cytopathology perspective. In phase 2, we pay special consideration to the image acquisition pipeline to ensure image integrity. Then we utilize the power of transfer learning using the convolutional layers of the VGG16 deep learning model for feature extraction. Finally, in phase 3, we apply the random forest classifier on the constructed dataset. <b><i>Results:</i></b> The dataset comprises 3,731 images distributed among the four TIS diagnostic categories. The model achieves 74% accuracy in this multiclass classification problem. Using a one-versus-all classifier, the fallout rate for images that are misclassified as negative for malignancy despite being a higher risk diagnosis is 0.13. Most of these misclassified images (77%) belong to the atypia of undetermined significance category in concordance with real-life statistics. <b><i>Conclusion:</i></b> This is the first and largest publicly available serous fluid cytology dataset based on a standardized diagnostic system. It is also the first dataset to include various types of effusions and pericardial fluid specimens. In addition, it is the first dataset to include the diagnostically challenging atypical categories. AI algorithms applied on this novel dataset show reliable results that can be incorporated into actual clinical practice with minimal risk of missing a diagnosis of malignancy. This work provides a foundation for researchers to develop and test further AI algorithms for the diagnosis of serous effusions.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3