Coculture of Chondrocytes and Stem Cells: A Review of Head and Neck Cell Lines for Cartilage Regeneration

Author:

Lee Michael Fook-Ho,Steffens Daniel,Chung Johnson H.Y.,Posniak Steven,Cheng Kai,Clark Jonathan,Wallace Gordon,Mukherjee Payal

Abstract

<b><i>Introduction:</i></b> Bioprinting, using “bio-inks” consisting of living cells, supporting structures, and biological motifs to create customized constructs, is an emerging technique that aims to overcome the challenges of cartilaginous reconstruction of head and neck structures. Several living cell lines and culturing methods have been explored as bio-inks with varying efficacy. Coculture of primary chondrocytes and stem cells (SCs) is one technique well established for degenerative joint disease treatment, with potential for use in expanding chondrocyte populations for bio-inks. This study aimed to evaluate the techniques for coculture of primary chondrocytes and SCs for head and neck cartilage regeneration. <b><i>Methods:</i></b> A literature review was performed through OVID/Web of Science/MEDLINE/BIOSIS Previews/Embase. Studies reporting on chondrocytes and SCs in conjunction with coculture or cartilage regeneration were included. Studies not reporting on findings from chondrocytes/SCs of the head and neck were excluded. Extracted data included cell sources, coculture ratios, and histological, biochemical, and clinical outcomes. <b><i>Results:</i></b> Fifteen studies met inclusion criteria. Auricular cartilage was the most common chondrocyte source (<i>n</i> = 10), then nasal septum (<i>n</i> = 5), articular (<i>n</i> = 1), and tracheal cartilage (<i>n</i> = 1). Bone marrow was the most common SC source (<i>n</i> = 9) then adipose tissue (<i>n</i> = 7). Techniques varied, with coculture ratios ranging from 1:1 to 1:10. All studies reported coculture to be superior to SC monoculture by all outcomes. Most studies reported superiority or equivalence of coculture to chondrocyte monoculture by all outcomes. When comparing clinical outcomes, coculture constructs were equivalent to chondrocyte monoculture in diameter and equivalent or inferior in wet weight and height. <b><i>Conclusion:</i></b> Coculture of primary chondrocytes and SCs is a promising technique for expanding chondrocyte populations, with at least equivalence to chondrocyte monoculture and superior to SC monoculture when seeded at the same chondrocyte densities. However, there remains a lack of consensus regarding the optimal cell sources and coculture ratios.

Publisher

S. Karger AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3