Targeting Peroxisome Proliferator Activated Receptor α (PPAR α) for the Prevention of Mitochondrial Impairment and Hypertrophy in Cardiomyocytes

Author:

Kar Dipak,Bandyopadhyay Arun 

Abstract

Background/Aims: Morphological and biochemical maladaptation of cardiomyocytes are associated with mitochondrial dysfunction and dysregulation in hypertrophic conditions. Peroxisome proliferator activated receptor α (PPARα), a drug target for dyslipidemia, is known to be downregulated in cardiomyocytes in response to hypertrophic stimuli. The current study was undertaken to investigate the role of PPARα signaling in mitochondrial remodeling and thereby dysregulation of cardiomyocytes due to hypertrophy in vitro. Methods: Rat cardiomyocytes H9c2 (2-1) and neonatal rat ventricular myocytes (NRVMs) were cultured and treated with α1-adrenergic agonist phenylephrine (PE, 100 µM, 24 hours) in the presence or absence of 10 µM fenofibrate or bezafibrate. Cellular hypertrophy was observed by atomic force microscopy and immunofluorescence with F-actin antibody. mRNA levels of hypertrophic marker genes and other genes were examined by quantitative real time PCR. Structural as well as functional remodeling of the mitochondria were evaluated by immunofluorescence (F-actin and COX-I), live cell imaging microscopy (JC-I, mitotracker), mitochondrial complex V activity, MPTP activity and ATP assay. Oxidative stress was measured by using sensitive fluorescent indicator probes. Cellular and mitochondrial calcium were measured by using fluorescent indicator probes Rhod-2 AM and X-rhod-1 AM, respectively. Targetscan prediction analysis was performed to find out miRNAs as putative regulators of VDAC. Luciferase assay was conducted to confirm binding of miR28 with VDAC. Results: Co-treatment of H9c2(2-1) cells with PE and fenofibrate restricted increase in cell size and expression of marker genes such as atrial-natriuretic peptide (ANP), brain-natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) compared to those with PE alone. Fenofibrate prevented PE-induced down regulation of PPARα-target genes like CPT-I and MCAD. Mitochondrial trans-membrane potential (Δψm) and motility were reduced by PE which were significantly checked by fenofibrate. Increased ROS production and calcium level in PE-treated cells were ameliorated by fenofibrate. Mitochondrial activity and ATP generation were reduced by PE which was rescued by fenofibrate. Fenofibrate also prevented PE-induced down regulation of mitochondrial genes like VDAC-I and COX-IV. Expression of several miRNAs was altered in hypertrophic cardiomyocytes which were restored when co-treated with fenofibrate. miR28 was found to target 3’ untranslated region of VDAC-I. Conclusion: Overall, the results demonstrate that PPARα signaling is critically involved in mitochondrial dysfunction in hypertrophic cardiomyocytes in which miR28 plays a pivotal role.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3