Dynamic Light Scattering: A New Noninvasive Technology for Neonatal Heart Rate Monitoring

Author:

Gangaram-Panday Norani H.ORCID,van Essen Tanja,Goos Tom G.,de Jonge Rogier C.J.ORCID,Reiss Irwin K.M.,van Weteringen WillemORCID

Abstract

<b><i>Background:</i></b> Heart rate (HR) detection in premature infants using electrocardiography (ECG) is challenging due to a low signal amplitude and the fragility of the premature skin. Recently, the dynamic light scattering (DLS) technique has been miniaturized, allowing noninvasive HR measurements with a single sensor. <b><i>Objective:</i></b> The aim was to determine the accuracy of DLS for HR measurement in infants, compared to ECG-derived HR. <b><i>Methods:</i></b> Stable infants with a gestational age of ≥26 weeks, monitored with ECG, were eligible for inclusion. HR was measured with the DLS sensor at 5 different sites for 15 min each. We recorded every 10th second of the DLS-derived HR and the DLS signal-to-noise ratio (SNR), and the ECG-derived HR was extracted for analysis. Patients were randomly divided into 2 groups. In the first group, the optimal SNR cut-off value was determined and then applied to the second group to assess agreement. <b><i>Results:</i></b> HR measurements from 31 infants were analyzed. ECG-DLS paired data points were collected at the forehead, an upper extremity, the thorax, a lower extremity, and the abdomen. When applying the international accuracy standard for HR detection, DLS accuracy in the first group (<i>n</i> = 15) was optimal at the forehead (SNR cut-off 1.66). Application of this cut-off to the second group (<i>n</i> = 16) showed good agreement between DLS-derived HR and ECG-derived HR (bias –0.73 bpm; 95% limits of agreement –15.46 and 14.00 bpm) at the forehead with approximately 80% (i.e., 1,066/1,310) of all data pairs remaining. <b><i>Conclusion:</i></b> The investigated DLS sensor was sensitive to movement, overall providing less accurate HR measurements than ECG and pulse oximetry. In this study population, specific measurement sites provided excellent signal quality and good agreement with ECG-derived HR.

Publisher

S. Karger AG

Subject

Developmental Biology,Pediatrics, Perinatology, and Child Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3