Optimization of Culture Medium for Maximal Production of Spinosad Using an Artificial Neural Network - Genetic Algorithm Modeling

Author:

Lan Zhou,Zhao Chen,Guo Weiqun,Guan Xiong,Zhang Xiaolin

Abstract

<b><i>Background:</i></b> Spinosyns, products of secondary metabolic pathway of <i>Saccharopolyspora spinosa</i>, show high insecticidal activity, but difficulty in enhancing the spinosad yield affects wide application. The fermentation process is a key factor in this case. <b><i>Methods:</i></b> The response surface methodology (RMS) and artificial neural network (ANN) modeling were applied to optimize medium components for spinosad production using <i>S. spinosa </i>strain CGMCC4.1365. Experiments were performed using a rotatable central composite design, and the data obtained were used to construct an ANN model and an RSM model. Using a genetic algorithm (GA), the input space of the ANN model was optimized to obtain optimal values of medium component concentrations. <b><i>Results:</i></b> The regression coefficients (R<sup>2</sup>) for the ANN and RSM models were 0.9866 and 0.9458, respectively, indicating that the fitness of the ANN model was higher. The maximal spinosad yield (401.26 mg/l) was obtained using ANN/GA-optimized concentrations. <b><i>Conclusion:</i></b> The hybrid ANN/GA approach provides a viable alternative to the conventional RSM approach for the modeling and optimization of fermentation processes.

Publisher

S. Karger AG

Subject

Molecular Biology,Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3