Tectonic Proteins Are Important Players in Non-Motile Ciliopathies

Author:

Gong Siyi,Ji Feng,Wang Bin,Zhang Yingying,Xu Xingshun,Sun Miao 

Abstract

Primary cilium is a ubiquitous, tiny organelle on the apex of the mammalian cells. Non-motile (primary) ciliopathies are diseases caused by the dysfunction of the primary cilium and they are characterized by diverse clinical and genetic heterogeneity. To date, nearly 200 genes have been shown to be associated with primary ciliopathies. Among them, tectonic genes are the important causative genes of ciliopathies. Tectonic proteins including TCTN1, TCTN2, and TCTN3 are important component proteins residing at the transition zone of cilia. Indeed, many ciliopathies have been reported to involve tectonics mutations, highlighting a pivotal role for tectonic proteins in ciliary functions. However, the specific functions of tectonic proteins remain largely enigmatic. Herein, we discuss the recent advances on the localization and structure of tectonic proteins and the functions of tectonic proteins. The increasing line of evidences demonstrates that tectonic proteins are required for ciliogenesis and regulate ciliary membrane composition. More importantly, Tectonic proteins play a vital role in the regulation of the Sonic Hedgehog (Shh) pathway; Tectonic deficient mice show the Shh pathway-related developmental defects. Tectonic proteins share similar functions including neural patterning and Gli3 processing but also each has a unique and indispensable role in the ciliogenesis and signaling pathways. At the same time, the mutations of tectonic genes are the causes of a serial of primary ciliopathies including Meckel-Gruber syndrome, Oral-facial-digital syndrome, and Joubert syndrome. Therefore, full understanding of functions of tectonic proteins will help to crack ciliopathies and improve life quality of patients by future gene therapy.

Publisher

S. Karger AG

Subject

Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3