TFAP2A Upregulates SKA3 to Promote Glycolysis and Reduce the Sensitivity of Lung Adenocarcinoma Cells to Cisplatin

Author:

Liu Guijun,Liu Xiang,Zeng Wei,Zhou Wangyan

Abstract

<b><i>Introduction:</i></b> Studies have shown that glycolysis metabolism affects the resistance or sensitivity of tumors to chemotherapy drugs. Emerging from recent research, a paradigm-shifting revelation has unfolded, elucidating the oncogenic nature of SKA3 within the context of lung adenocarcinoma (LUAD). Consequently, this work was designed to delve into the effects of SKA3 on glycolysis and cisplatin (CDDP) resistance in LUAD cells and to find new possibilities for individualized treatment of LUAD. <b><i>Methods:</i></b> LUAD mRNA expression data from the TCGA database were procured to scrutinize the differential expression patterns of SKA3 in both tumor and normal tissues. GSEA and Pearson correlation analyses were employed to elucidate the impact of SKA3 on signaling pathways within the context of LUAD. In order to discern the upstream regulatory mechanisms, the ChEA and JASPAR databases were utilized to predict the transcription factors and binding sites associated with SKA3. qRT-PCR and Western blot were implemented to assay the mRNA and protein expression levels of SKA3 and TFAP2A. Chromatin immunoprecipitation and dual-luciferase assays were performed to solidify the binding relationship between the two. Extracellular acidification rate, glucose consumption, lactate production, and glycolysis-related proteins (HK2, GLUT1, and LDHA) were used to evaluate the level of glycolysis. Cell viability under CDDP treatment was determined utilizing the CCK-8, allowing for the calculation of IC<sub>50</sub>. The expression levels of SKA3 and TFAP2A proteins were detected by immunohistochemistry (IHC). <b><i>Results:</i></b> SKA3 exhibited upregulation in LUAD tissues and cell lines, establishing a direct linkage with glycolysis pathway. Overexpression of SKA3 fostered glycolysis in LUAD, resulting in reduced sensitivity toward CDDP treatment. The upstream transcription factor of SKA3, TFAP2A, was also upregulated in LUAD and could promote SKA3 transcription. Overexpression of TFAP2A also fostered the glycolysis of LUAD. Rescue assays showed that TFAP2A promoted glycolysis in LUAD cells by activating SKA3, reducing the sensitivity of LUAD cells to CDDP. The IHC analysis revealed a positive correlation between high expression of SKA3 and TFAP2A and CDDP resistance. <b><i>Conclusion:</i></b> In summary, TFAP2A can transcriptionally activate SKA3, promote glycolysis in LUAD, and protect LUAD cells from CDDP treatment, indicating that targeting the TFAP2A/SKA3 axis may become a plausible and pragmatic therapeutic strategy for the clinical governance of LUAD.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3