The rnc Gene Regulates the Microstructure of Exopolysaccharide in the Biofilm of Streptococcus mutans through the β-Monosaccharides

Author:

Lu Yangyu,Zhang Hongyu,Li Meng,Mao Mengying,Song Jiaqi,Deng Yalan,Lei Lei,Yang Yingming,Hu Tao

Abstract

Streptococcus mutans is known as the crucial pathogen of human dental caries, owing to its contribution to the biofilm development via the capacity of synthesizing exopolysaccharide (EPS), which mainly compose of α-glycosidic bond and β-glycosidic bond. β-glycosidic bond is less flexible than α-glycosidic bond because of differences between their configurational properties. Previous studies have shown that the rnc gene is implicated in the EPS formation and the cariogenicity of S. mutans. However, the effects of rnc on the microstructure of EPS have been not well-understood yet. Here, we further investigated how the rnc gene worked to modulate microstructural properties of the extracellular polysaccharide of S. mutans using glycomics methods. The gas chromatography-mass spectrometer showed that the proportion of glucose was decreased in water-soluble EPS and galactose was absent in water-insoluble EPS from the S. mutans rnc-deficient strain (Smurnc), compared with the isogenic wild-type strain (UA159). The composition of functional groups and the displacement of hydrogen bond were analyzed by infrared radiation and 1H nuclear magnetic resonance, respectively. In addition, phenotypic modulation of the biofilm matrix was assessed by microscopy. We found that the EPS of UA159 and the rnc overexpression strain (Smurnc+) mainly consisted of β-glycosidic bonds. Conversely, the EPS of Smurnc were made up of mostly α-glycosidic bonds, leading to the attenuation of biofilm biomass and bacterial adhesion. Furthermore, the existence of β-glycosidic bond was verified by enzyme digestion. Collectively, the rnc gene modulates the conversion of β-glycosidic bonds, which may play important roles in regulating the micromolecule structure of the EPS matrix, thus affecting the characteristics of S. mutans biofilm. These data illustrate that β-glycosidic bonds mediated by rnc may be potential targets for the prevention and treatment of dental caries.

Publisher

S. Karger AG

Subject

General Dentistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3