LRG1 Contributes to the Pathogenesis of Multiple Kidney Diseases: A Comprehensive Review

Author:

Chen Chunyan,Zhang Jingwei,Yu Tao,Feng Haiya,Liao Jian,Jia Yifei

Abstract

<b><i>Background:</i></b> The increasing prevalence of kidney diseases has become a significant public health issue, with a global prevalence exceeding 10%. In order to accurately identify biochemical changes and treatment outcomes associated with kidney diseases, novel methods targeting specific genes have been discovered. Among these genes, leucine-rich α-2 glycoprotein 1 (LRG1) has been identified to function as a multifunctional pathogenic signaling molecule in multiple diseases, including kidney diseases. This study aims to provide a comprehensive overview of the current evidence regarding the roles of LRG1 in different types of kidney diseases. <b><i>Summary:</i></b> Based on a comprehensive review, it was found that LRG1 was upregulated in the urine, serum, or renal tissues of patients or experimental animal models with multiple kidney diseases, such as diabetic nephropathy, kidney injury, IgA nephropathy, chronic kidney diseases, clear cell renal cell carcinoma, end-stage renal disease, canine leishmaniosis-induced kidney disease, kidney fibrosis, and aristolochic acid nephropathy. Mechanistically, the role of LRG1 in kidney diseases is believed to be detrimental, potentially through its regulation of various genes and signaling cascades, i.e., fibronectin 1, GPR56, vascular endothelial growth factor (VEGF), VEGFR-2, death receptor 5, GDF15, HIF-1α, SPP1, activin receptor-like kinase 1-Smad1/5/8, NLRP3-IL-1b, and transforming growth factor β pathway. <b><i>Key Messages:</i></b> Further research is needed to fully comprehend the molecular mechanisms by which LRG1 contributes to the pathogenesis and pathophysiology of kidney diseases. It is anticipated that targeted treatments focusing on LRG1 will be utilized in clinical trials and implemented in clinical practice in the future.

Publisher

S. Karger AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3