Targeted Metabolomic Profiling of Plasma Samples in Gastric Cancer by Liquid Chromatography-Mass Spectrometry

Author:

Matsumoto Taisuke,Fukuzawa Masakatsu,Itoi Takao,Sugimoto MasahiroORCID,Aizawa YumiORCID,Sunamura Makoto,Kawai Takashi,Nemoto Daiki,Shinohara Hirokazu,Muramatsu Takahiro,Suzuki Yuka,Kagawa Yasuyuki,Suguro Maya,Uchida Kumiko,Koyama Yohei,Madarame AkiraORCID,Morise Takashi,Yamaguchi Hayato,Sugimoto Akihiko,Yamauchi Yoshiya,Kono Shin,Naito Sakiko

Abstract

<b><i>Introduction:</i></b> As the high mortality rate of gastric cancer (GC) is due to delayed diagnosis, early detection is vital for improved patient outcomes. Metabolic deregulation plays an important role in GC. Although various metabolite-level biomarkers for early detection have been assessed, there is still no unified early detection method. We conducted a plasma metabolome study to assess metabolites that may distinguish GC samples from non-GC samples. <b><i>Methods:</i></b> Blood samples were collected from 72 GC patients and 29 control participants (non-GC group) at the Tokyo Medical University Hospital between March 2020 and November 2020. Hydrophilic metabolites were identified and quantified using liquid chromatography-time-of-flight mass spectrometry. Differences in metabolite concentrations between the GC and non-GC groups were evaluated using the Mann-Whitney test. The discrimination ability of each metabolite was evaluated by the area under the receiver operating characteristic curve. A radial basis function (RBF) kernel-based support vector machine (SVM) model was developed to assess the discrimination ability of multiple metabolites. The selection of variables used for the SVM utilized a step-wise regression method. <b><i>Results:</i></b> Of the 96 quantified metabolites, 8 were significantly different between the GC and non-GC groups. Of these, <i>N</i><sup>1</sup>-acetylspermine, succinate, and histidine were used in the RBF-SVM model to discriminate GC samples from non-GC samples. The area under the curve (AUC) of the RBF-SVM model was higher (0.915; 95% CI: 0.865–0.965, <i>p</i> &#x3c; 0.0001), indicating good performance of the RBF-SVM model. The application of this RBF-SVM to the validation dataset resulted from the AUC of the RBF-SVM model was (0.885; 95% CI: 0.797–0.973, <i>p</i> &#x3c; 0.0001), indicating the good performance of the RBF-SVM model. The sensitivity of the RBF-SVM model was better (69.0%) than those of the common tumor markers carcinoembryonic antigen (CEA) (10.5%) and carbohydrate antigen 19-9 (CA19-9) (2.86%). The RBF-SVM showed a low correlation with CEA and CA19-9, indicating its independence. <b><i>Conclusion:</i></b> We analyzed plasma metabolomics, and a combination of the quantified metabolites showed high sensitivity for the detection of GC. The independence of the RBF-SVM from tumor markers suggested that their complementary use would be helpful for GC screening.

Publisher

S. Karger AG

Subject

Gastroenterology

Reference29 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3