Identification of renal ischemia reperfusion injury subtypes and predictive model for graft loss after kidney transplantation based on programmed cell death-related genes

Author:

Ji Jing,Ma Yuan,Liu Xintong,Zhou Qingqing,Zheng Xizi,Chen Ying,Li Zehua,Yang LiORCID

Abstract

Introduction:Ischemia reperfusion injury (IRI) is detrimental to kidney transplants and may contribute to poor long-term outcomes of transplantation. Programmed cell death (PCD), a regulated cell death form triggered by IRI, is often indicative of an unfavorable prognosis following transplantation. However, given the intricate pathophysiology of IRI and the considerable variability in clinical conditions during kidney transplantation, the specific patterns of cell death within renal tissues remain ambiguous. Consequently, accurately predicting the outcomes for transplanted kidneys continues to be a formidable challenge. Methods:Eight Gene Expression Omnibus (GEO) datasets of biopsied transplanted kidney samples post IRI and 1548 PCD-related genes derived from 18 PCD patterns were collected in our study. Consensus clustering was performed to identify distinct IRI subtypes based on PCD features (IRI PCD subtypes). Differential enrichment analysis of cell death, metabolic signatures, and immune infiltration across these subtypes was evaluated. Three machine learning algorithms were used to identify PCD patterns related to prognosis. Genes associated with graft loss were screened for each PCD type. A predictive model for graft loss was constructed using 101 combinations of 10 machine learning algorithms. Results:Four IRI subtypes were identified: PCD-A, PCD-B, PCD-C, and PCD-D. PCD-A, characterized by high enrichment of multiple cell death patterns, significant metabolic paralysis, and immune infiltration, showed the poorest prognosis among the four subtypes. While PCD-D involved the least kind of cell death patterns with the features of extensive activation of metabolic pathways and the lowest immune infiltration, correlating with the best prognosis in the four subtypes. Using various machine learning algorithms, 10 cell death patterns and 42 PCD-related genes were identified positively correlated with graft loss. The predictive model demonstrated high sensitivity and specificity, with area under the curve (AUC) values for 0.5-, 1-, 2-, 3-, and 4-year graft survival at 0.888, 0.91, 0.926, 0.923, and 0.923, respectively. Conclusion:Our study explored the comprehensive features of PCD patterns in transplanted kidney samples post IRI. The prediction model shows great promise in forecasting graft loss and could aid in risk stratification in patients following kidney transplantation.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3