Abstract
Atrial fibrillation (AF) is a highly prevalent condition associated with pronounced cardiovascular-related morbidity, mortality and socioeconomic burden. It accounts for more hospitalization days than does any other arrhythmia. This article reviews the basic electrophysiology of AF, electrical and structural remodeling in AF and recent advances in understanding the molecular mechanisms of AF in relation to specific microRNAs. This paper also reviews the potential role of microRNAs as novel therapeutic targets as well as biomarkers in the management of AF. AF shows characteristics typical of altered electrophysiology that promote ectopic activity and facilitate reentry, thereby contributing to the progression from short paroxysmal AF to a persistent, permanent form via atrial remodeling, even in the absence of progressive underlying heart disease. MicroRNAs have been suggested to influence the development of AF by regulating gene expression at the post-transcriptional level. Increasing evidence has identified various microRNA modifications and their impacts on AF initiation and maintenance through electrical and structural remodeling. The discovery of specific microRNAs as novel therapeutic targets and some experimental evidence implicating microRNAs as potential molecular diagnostic markers have had a significant impact on the diagnosis and management of AF and demand further research.
Subject
Pharmacology (medical),Cardiology and Cardiovascular Medicine
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献