The Difference in the Cytoskeletal Machinery of Growth Cones of Growing Axons and Leading Processes

Author:

Miyata Kaho,Hayashi KensukeORCID

Abstract

Neuronal migration and axon elongation in the developing brain are essential events for neural network formation. Leading processes of migrating neurons and elongating axons have growth cones at their tips. Cytoskeletal machinery for advance of growth cones of the two processes has been thought the same. In this study, we compared axonal-elongating growth cones and leading-process growth cones in the same conditions that manipulated filopodia, lamellipodia, and drebrin, the latter mediates actin filament-microtubule interaction. Cerebral cortex (CX) neurons and medial ganglionic eminence (MGE) neurons from embryonic mice were cultured on less-adhesive cover glasses. Inhibition of filopodia formation by triple knockdown of mammalian-enabled, Ena-VASP-like, and vasodilator-stimulated phosphoprotein or double knockdown of Daam1 and fascin affected axon formation of CX neurons but did not affect the morphology of leading process of MGE neurons. On the other hand, treatment with CK666, to inhibit lamellipodia formation, did not affect axons but destroyed the leading-process growth cones. When drebrin was knocked down, the morphology of CX neurons remained unchanged, but the leading processes of MGE neurons became shorter. In vivo assay of radial migration of CX neurons revealed that drebrin knockdown inhibited migration, while it did not affect axon elongation. These results showed that the filopodia-microtubule system is the main driving machinery in elongating growth cones, while the lamellipodia-drebrin-microtubule system is the main system in leading-process growth cones of migrating neurons.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3