Investigating the Effects of Maternal Separation on Hypothalamic-Pituitary-Adrenal Axis and Glucose Homeostasis under Chronic Social Defeat Stress in Young Adult Male Rat Offspring

Author:

Eskandari FarzanehORCID,Salimi Mina,Binayi Fateme,Abdollahifar Mohammad-Amin,Eftekhary Mohamad,Hedayati MehdiORCID,Ghanbarian HosseinORCID,Zardooz Homeira

Abstract

<b><i>Introduction:</i></b> Given the suggested metabolic regulatory effects of stress-responsive genes and based on the impacts of early-life stress on HPA axis development, this study aimed to characterize the maternal separation (MS) impact on the communication between glucose metabolism and HPA axis dysregulations under chronic social defeat stress (CSDS). <b><i>Methods:</i></b> During the first 2 weeks of life, male Wistar rats were either exposed to MS or left undisturbed with their mothers (Std). Starting on postnatal day 50, the animals of each group were either left undisturbed in the standard group housing (Con) or underwent CSDS for 3 weeks. There were four groups (<i>n</i> = 10/group): Std-Con, MS-Con, Std-CSDS, and MS-CSDS. <b><i>Results:</i></b> Early and/or adult life adversity reduced β-cell number, muscular FK506-binding protein 51 (FKBP51) content, and BMI in adulthood. The reduction of β-cell number and BMI in the MS-CSDS rats were more profound than MS-Con group. CSDS either alone or in combination with MS reduced locomotor activity and increased and decreased corticotropin-releasing factor type 1 receptor (CRFR1) content, respectively, in hypothalamus and pancreas. Although, under CSDS, MS intensified HPA axis overactivity and reduced isolated islets’ insulin secretion, it could promote resilience to depression symptoms. No differences were observed in hypothalamic Fkbp5 gene DNA methylation and glucose tolerance among groups. <b><i>Conclusion:</i></b> MS exacerbated HPA axis overactivity and the endocrine pancreas dysfunctions under CSDS. The intensified corticosterone secretion and the diminished content of pancreatic CRFR1 protein could be involved in the reduced β-cell number and islets’ insulin secretion under CSDS. The decreased muscular FKBP51 content might be a homeostatic response to slow down insulin resistance development under chronic stress.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Reference89 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3