Robotic Setup Promises Consistent Effects of Multilocular Gastrointestinal Electrical Stimulation: First Results of a Porcine Study

Author:

Schiemer Jonas F.,Stumm Karen,Somerlik-Fuchs Karin H.,Hoffmann Klaus-Peter,Baumgart Jan,Kneist Werner

Abstract

Background: Electrical stimulation (ES) of several gastrointestinal (GI) segments is a promising therapeutic option for multilocular GI dysmotility, but conventional surgical access by laparotomy involves a high degree of tissue trauma. We evaluated a minimally invasive surgical approach using a robotic surgical system to perform electromyographic (EMG) recordings and ES of several porcine GI segments, comparing these data to an open surgical approach by laparotomy. Materials and Methods: In 5 acute porcine experiments, we placed multiple electrodes on the stomach, duodenum, jejunum, ileum, and colon. Three experiments were performed with a median laparotomy and 2 others using a robotic platform. Multichannel EMGs were recorded, and ES was sequentially delivered with 4 ES parameters to the 5 target segments. We calculated pre- and poststimulatory spikes per minute (Spm) and performed a statistical Poisson analysis. Results: Electrode placement was achieved in all cases without complications. Increased technical and implantation time were required to achieve the robotic electrode placement, but invasiveness was markedly reduced in comparison to the conventional approach. The highest calculated (c)Spm values were found in the poststimulatory period of the small bowel with both the conventional and robotic approaches. Six of the 20 Poisson test results in the open setup reached statistical significance and 12 were significant in the robotic experiments. Conclusions: The robotic setup was less invasive, revealed more consistent effects of multilocular ES in several GI segments, and is a promising option for future preclinical and clinical studies of GI motility disorders.

Publisher

S. Karger AG

Subject

Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3