Author:
Shieh Alexander,Cen Steven Y.,Varghese Bino A.,Hwang Darryl,Lei Xiaomeng,Setayesh Ali,Siddiqi Imran,Aron Manju,Dsouza Anishka,Gill Inderbir S.,Wallace William,Duddalwar Vinay
Abstract
Introduction: Renal cell carcinoma (RCC) is the ninth most common cancer worldwide, with clear cell RCC (ccRCC) being the most frequent histological subtype. The tumor immune microenvironment (TIME) of ccRCC is an important factor to guide treatment, but current assessments are tissue-based, which can be time-consuming and resource-intensive. In this study, we used radiomics extracted from clinically performed computed tomography (CT) as a noninvasive surrogate for CD68 tumor-associated macrophages (TAMs), a significant component of ccRCC TIME. Methods: TAM population was measured by CD68+/PanCK+ ratio and tumor-TAM clustering was measured by normalized K function calculated from multiplex immunofluorescence (mIF). A total of 1,076 regions on mIF slides from 78 patients were included. Radiomic features were extracted from multiphase CT of the ccRCC tumor. Statistical machine learning models, including random forest, Adaptive Boosting, and ElasticNet, were used to predict TAM population and tumor-TAM clustering. Results: The best models achieved an area under the ROC curve of 0.81 (95% CI: [0.69, 0.92]) for TAM population and 0.77 (95% CI: [0.66, 0.88]) for tumor-TAM clustering, respectively. Conclusion: Our study demonstrates the potential of using CT radiomics-derived imaging markers as a surrogate for assessment of TAM in ccRCC for real-time treatment response monitoring and patient selection for targeted therapies and immunotherapies.
Subject
Cancer Research,Oncology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献