Amino-Nogo Inhibits Optic Nerve Regeneration and Functional Recovery via the Integrin αv Signaling Pathway in Rats

Author:

Huo Yan,Yin Xiao-Lei,Ji Shu-Xing,Zou Huan,Lang Min,Zheng Zheng,Cai Xiao-Feng,Liu Wei,Chen Chun-Lin,Zhou Yuan-Guo,Yuan Rong-Di,Ye Jian

Abstract

Background: Nogo-A, a major myelin-associated inhibitor, can inhibit injured optic nerve regeneration. However, whether Amino-Nogo is the most important functional domain of Nogo-A remains unknown. This study aimed to identify the role of Amino-Nogo following optic nerve injury, and the mechanism of the Amino-Nogo-integrin αv signaling pathway in vivo. Methods: Sprague-Dawley rats with optic nerve crush injury were injected with Nogo-A siRNA (Nogo-A-siRNA), the Nogo-66 functional domain antagonist peptide of Nogo-A (Nep1-40) or a recombinant rat Amino-Nogo-A protein (∆20) into the vitreous cavity to knock down Nogo-A, inhibit Nogo-66 or activate the Amino-Nogo, resparately. Retinal ganglion cell (RGC) density, axon regeneration and the pattern of NPN of visual electrophysiology (flash visual evoked potentials [F-VEP]) at different times post-injury were investigated. Results: Our study revealed a lower RGC survival rate; shorter axonal outgrowth; longer N1, P1 and N2 waves latencies; and lower N1-P1 and P1-N2 amplitudes in the Δ20 group, and Δ20 treatment significantly attenuated integrin αv expression and phosphorylated focal adhesion kinase (p-FAK) levels. In the Nep1-40 and Nogo-A siRNA groups, there were higher RGC survival rates, longer axonal outgrowth, shorter N1 and P1 wave latencies, and higher N1-P1 and P1-N2amplitudes. Nogo-A siRNA treatment significantly increased integrin αv expression and p-FAK levels. Nepl-40 treatment did not alter integrin αv expression. In addition, there was no significant change in integrin α5 in any group. Conclusion: These results suggest that the integrin signaling pathway is regulated by Amino-Nogo, which inhibits optic nerve regeneration and functional recovery, and that the integrin subunit involved might be integrin αv but not integrin α5.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3