DIDS Reduces Ischemia/Reperfusion-Induced Myocardial Injury in Rats

Author:

Wang Xiaoming,Cao Yanan,Shen Mingzhi,Wang Bo,Zhang Weiwei,Liu Yan,He Xiaole,Wang Lin,Xia Yuesheng,Ding Mingge,Xu Xihui,Ren Jun

Abstract

Background/Aims: Anion channels such as chloride channel are known to participate in the regulation of a wide variety of cellular processes including development, differentiation, proliferation, apoptosis and regeneration. This study was designed to examine the effect of the non-selective anion channel blocker 4,4'-Diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) on cardiac function and apoptosis using a rat model of ischemia/reperfusion (I/R). Methods: Fifty male SD rats were randomly divided into the following groups including sham, I/R and I/R+DIDS (7, 14 or 28 mg/kg). In DIDS group, rats received DIDS treatment (4 ml/kg/hr) at the beginning of reperfusion for 2 hrs using a programmed micro-pump. Cardiac function was evaluated including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP) as well as positive and negative maximal derivatives of left ventricular pressure (± dP/dtmax). Myocardial infarct size was detected using the double staining with 2, 3, 5-triphenyl-2H-tetra-zolium chloride (TTC) and Evan's blue dye. DNA ladder, TUNEL assay, Bax and Bcl-2 protein levels were evaluated. Levels of ROS and Akt phosphorylation were detected. Results: I/R injury compromised cardiac function as manifested by reduced LVSP and ± dP/dtmax as well as pronounced apoptosis. I/R-induced cardiac anomalies were markedly ameliorated by DIDS. DIDS retarded I/R-induced myocardial infarct and apoptosis. In addition, DIDS ameliorated I/R-induced ROS production and Akt dephosphorylation in the heart. Conclusion: Taken together, our data revealed that DIDS may protect cardiomyocytes against I/R injury as evidenced by improved cardiac function, Bcl-2, Akt phosphorylation, and reduced myocardial apoptosis, Bax expression, ROS production and myocardial infarct size.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3