MicroRNA-34a Inhibition of the TLR Signaling Pathway Via CXCL10 Suppresses Breast Cancer Cell Invasion and Migration

Author:

Xu Min,Li Dong,Yang Chen,Ji Jian-Song

Abstract

Background/Aims: Breast cancer (BC) starts as a local disease, but it can metastasize to the lymph nodes and distant organs. However, the metastatic process is still poorly understood. The mRNA microarray datasets GSE26910 and GSE33447 show that CXCL10 is up-regulated in BC, and the microRNA microarray dataset GSE38167 and a network meta-analysis of microRNA expression profile studies in human BC suggest that microRNA-34a (miR-34a) is down-regulated in BC. CXCL10 was predicted as a target of miR-34a by microRNA.org. In this study, we uncovered a CXCL10-independent mechanism by which miR-34a exerts its antimetastatic activity in BC. Methods: To investigate the clinical significance of miR-34a in BC, we collected cancer tissues and paracancerous tissues from 258 patients with BC. In addition, a series of inhibitors, mimics, and siRNAs was introduced into MCF-7 and T47D cells to validate the regulatory mechanisms by which miR-34a regulates CXCL10. Next, to better understand the pivotal role of TLR signaling pathway inhibition in MCF-7 and T47D cells, we blocked the TLR signaling pathway using OxPAPC, an antagonist of TLR signaling. Results: Among BC patients, miR-34a was down-regulated, CXCL10 was up-regulated, and the TLR signaling pathway was activated. Determination of luciferase activity revealed that CXCL10 was a target of miR-34a. Through gain- and loss-of-function studies, miR-34a was demonstrated to negatively regulate CXCL10; inhibit activation of the TLR signaling pathway; significantly suppress in vitro cell proliferation, migration, and invasion; and induce apoptosis. Conclusion: Our findings suggest that functional loss or suppression of the tumor suppressor CXCL10 due to induction of miR-34a leads to inhibition of the TLR signaling pathway during breast tumorigenesis, providing a novel target for the molecular treatment of breast malignancies.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3