Research Themes and Trends in Ten Top-Ranked Nephrology Journals: A Text Mining Analysis

Author:

Zengul Ferhat D.ORCID,Lee Timmy,Delen Dursun,Almehmi Ammar,Ivankova Nataliya V.,Mehta Tapan,Topuz Kazim

Abstract

Background: Nephrology research is expanding, and harnessing the much-needed information and data for the practice of evidence-based medicine is becoming more challenging. In this study, we used the natural language processing and text mining approach to mitigate some of these challenges. Methods: We analyzed 17,412 abstracts from the top-10 nephrology journals over 10 years (2007–2017) by using latent semantic analysis and topic analysis. Results: The analyses revealed 10 distinct topics (T) for nephrology research ranging from basic science studies, using animal modeling (T-1), to dialysis vascular access-related issues ­(T-10). The trend analyses indicated that while the majority of topics stayed relatively stable, some of the research topics experienced increasing popularity over time such as studies focusing on mortality and survival (T-4) and Patient-related Outcomes and Perspectives of Clinicians (T-5). However, some research topics such as studies focusing on animal modeling (T-1), predictors of acute kidney injury, and dialysis access (T-10) exhibited a downward trend. Conclusion: Stakeholders of nephrology research may use these trends further to develop priorities and enrich the research agenda for the future.

Publisher

S. Karger AG

Subject

Nephrology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3