Evaluating Injury Severity in Neonatal Encephalopathy Using Automated Quantitative Electroencephalography Analysis: A Pilot Study

Author:

Catenaccio EvaORCID,Smith Rachel J.,Chavez-Valdez RaulORCID,Burton Vera J.,Graham ErnestORCID,Parkinson Charlamaine,Vaidya DhananjayORCID,Tekes Aylin,Northington Frances J.ORCID,Everett Allen D.,Stafstrom Carl E.ORCID,Ritzl Eva K.ORCID

Abstract

Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3