A Review of Applications of Machine Learning in Mammography and Future Challenges

Author:

Batchu Sai,Liu Fan,Amireh Ahmad,Waller Joseph,Umair Muhammad

Abstract

<b><i>Background:</i></b> The aim of this study is to systematically review the literature to summarize the evidence surrounding the clinical utility of artificial intelligence (AI) in the field of mammography. Databases from PubMed, IEEE Xplore, and Scopus were searched for relevant literature. Studies evaluating AI models in the context of prediction and diagnosis of breast malignancies that also reported conventional performance metrics were deemed suitable for inclusion. From 90 unique citations, 21 studies were considered suitable for our examination. Data was not pooled due to heterogeneity in study evaluation methods. <b><i>Summary:</i></b> Three studies showed the applicability of AI in reducing workload. Six studies demonstrated that AI can aid in diagnosis, with up to 69% reduction in false positives and an increase in sensitivity ranging from 84 to 91%. Five studies show how AI models can independently mark and classify suspicious findings on conventional scans, with abilities comparable with radiologists. Seven studies examined AI predictive potential for breast cancer and risk score calculation. <b><i>Key Messages:</i></b> Despite limitations in the current evidence base and technical obstacles, this review suggests AI has marked potential for extensive use in mammography. Additional works, including large-scale prospective studies, are warranted to elucidate the clinical utility of AI.

Publisher

S. Karger AG

Subject

Cancer Research,Oncology,General Medicine

Reference36 articles.

1. Duffy SW, Tabar L, Vitak B, Day NE, Smith RA, Chen HH, et al. The relative contributions of screen-detected in situ and invasive breast carcinomas in reducing mortality from the disease. Eur J Cancer2. 2003;39(12):1755–60.

2. Nelson HD, Fu R, Cantor A, Pappas M, Daeges M, Humphrey L. Effectiveness of breast cancer screening: systematic review and meta-analysis to update the 2009 U.S. Preventive Services Task Force Recommendation. Ann Intern Med5. 2016;164(4):244–55.

3. Hubbard RA, Kerlikowske K, Flowers CI, Yankaskas BC, Zhu W, Miglioretti DL. Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Ann Intern Med6. 2011;155(8):481–92.

4. Ong MS, Mandl KD. National expenditure for false-positive mammograms and breast cancer overdiagnoses estimated at $4 billion a year. Health Aff (Millwood)8. 2015;34(4):576–83.

5. Nelson HD, Pappas M, Cantor A, Griffin J, Daeges M, Humphrey L. Harms of Breast Cancer Screening: Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann Intern Med9. 2016;164(4):256–67.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3