Propofol Disrupts Aerobic Glycolysis in Colorectal Cancer Cells via Inactivation of the NMDAR-CAMKII-ERK Pathway

Author:

Chen Xiangyuan,Wu Qichao,Sun Pengfei,Zhao Yanjun,Zhu Minmin,Miao Changhong

Abstract

Background/Aims: To investigate the effect of propofol on glucose metabolism in colorectal cancer cells and in an in vivo xenograft model. Methods: Glucose metabolism was assessed by measuring the extracellular acidification rate in HT29 and SW480 colorectal cancer cells. Quantitative real-time PCR and western blot analyses were used to detect mRNA and protein levels, respectively. Intracellular calcium was assessed by using a Fluo-3 AM fluorescence kit. Micro-positron emission tomography/computed tomography (microPET/CT) imaging was used to analyze glucose metabolism in the tumors of the xenograft model. Results: Propofol exposure induced a dose-dependent decrease of aerobic glycolysis in HT29 and SW480 colorectal cancer cells. MicroPET/CT indicated that propofol also inhibited 18F-FDG uptake in the xenograft model. In addition, hypoxia-inducible factor 1α (HIF1α) was also reduced by propofol dose-dependently. Propofol repressed the NMDAR-CAMKII-ERK pathway to inactivate HIF1α and therefore reduced glycolysis. Conclusion: Propofol inhibited aerobic glycolysis in colorectal cancer cells through the inactivation of the NMDAR-CAMKII-ERK pathway, which may facilitate a better understanding of the use of propofol in the clinical setting.

Publisher

S. Karger AG

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3