Organizational Conservation and Flexibility in the Evolution of Birdsong and Avian Motor Control

Author:

Colquitt Bradley M.ORCID

Abstract

Birds and mammals have independently evolved complex behavioral and cognitive capabilities yet have markedly different brain structures. An open question is to what extent, despite these differences in anatomy, birds and mammals have evolved similar neural solutions to complex motor control and at what level of organization these similarities might lie. Courtship song in songbirds, a learned motor skill that is similar to the fine motor skills of many mammals including human speech, provides a powerful system in which to study the links connecting the development and evolution of cells, circuits, and behavior. Until recently, obtaining cellular-resolution views of the specialized neural circuitry that subserves birdsong was impossible due to a lack of molecular tools for songbirds. However, the ongoing revolution in cellular profiling and genomics offers unprecedented opportunities for molecular analysis in organisms that lack a traditional genetic infrastructure but have tractable, well-defined behaviors. Here, I describe recent efforts to understand the evolutionary relationships between birdsong control circuitry and mammalian neocortical circuitry using new approaches to measure gene expression in single cells. These results, combined with foundational work relating avian and mammalian brains at a range of biological levels, present an emerging view that amniote pallium evolution is a story of diverse neural circuit architectures employing conserved neuronal elements within a conserved topological framework. This view suggests that one locus of pallial neural circuit evolution lies at the intersection between the gene regulatory programs that regulate regional patterning and those that specify functional identity. Modifications to this intersection may underlie the evolution of pallial motor control in birds in general and to the evolutionary and developmental relationships of these circuits to the avian pallial amygdala.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3