Video-Based Pose Estimation for Gait Analysis in Stroke Survivors during Clinical Assessments: A Proof-of-Concept Study

Author:

Lonini LucaORCID,Moon Yaejin,Embry KyleORCID,Cotton R. JamesORCID,McKenzie KellyORCID,Jenz SophiaORCID,Jayaraman Arun

Abstract

Recent advancements in deep learning have produced significant progress in markerless human pose estimation, making it possible to estimate human kinematics from single camera videos without the need for reflective markers and specialized labs equipped with motion capture systems. Such algorithms have the potential to enable the quantification of clinical metrics from videos recorded with a handheld camera. Here we used DeepLabCut, an open-source framework for markerless pose estimation, to fine-tune a deep network to track 5 body keypoints (hip, knee, ankle, heel, and toe) in 82 below-waist videos of 8 patients with stroke performing overground walking during clinical assessments. We trained the pose estimation model by labeling the keypoints in 2 frames per video and then trained a convolutional neural network to estimate 5 clinically relevant gait parameters (cadence, double support time, swing time, stance time, and walking speed) from the trajectory of these keypoints. These results were then compared to those obtained from a clinical system for gait analysis (GAITRite®, CIR Systems). Absolute accuracy (mean error) and precision (standard deviation of error) for swing, stance, and double support time were within 0.04 ± 0.11 s; Pearson’s correlation with the reference system was moderate for swing times (<i>r</i> = 0.4–0.66), but stronger for stance and double support time (<i>r</i> = 0.93–0.95). Cadence mean error was −0.25 steps/min ± 3.9 steps/min (<i>r</i> = 0.97), while walking speed mean error was −0.02 ± 0.11 m/s (<i>r</i> = 0.92). These preliminary results suggest that single camera videos and pose estimation models based on deep networks could be used to quantify clinically relevant gait metrics in individuals poststroke, even while using assistive devices in uncontrolled environments. Such development opens the door to applications for gait analysis both inside and outside of clinical settings, without the need of sophisticated equipment.

Publisher

S. Karger AG

Subject

Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3