Pirfenidone Attenuates Renal Tubulointerstitial Fibrosis through Inhibiting miR-21

Author:

Bi Liangliang,Huang Yanjie,Li Jing,Yang Xiaoqing,Hou Gailing,Zhai Panpan,Zhang Qiushuang,Alhaji Abubakari Adam,Yang Yueli,Liu Bo

Abstract

<b><i>Background:</i></b> Our previous studies had shown pirfenidone (PFD) not only improved tubulointerstitial fibrosis (TIF) but also inhibited the expression of microRNA-21 (miR-21) in the renal tissue of unilateral urethral obstruction (UUO) rats. This study aims to investigate whether PFD can attenuate TIF through inhibiting miR-21 in UUO rats. <b><i>Methods:</i></b> Sprague Dawley rats were divided randomly into sham-operated group, UUO group, and PFD and olmesartan (Olm) treatment groups. Samples were collected on day 14. Expression of miR-21, TGF-β1, Smad3, and Smad7 mRNA in the renal tissue was detected using real-time quantitative PCR. Immunohistochemistry was performed to assess the protein expressions of collagen III, E-cadherin, and α-SMA. Automated capillary Western blotting was used to detect the quantitative expression of TGF-β1, Smad3, p-Smad3, Smad7, collagen III, E-cadherin, and α-SMA in renal tissues. The expression of miR-21 and Smad7 mRNA and the protein levels of collagen III and α-SMA were examined in the miR-21-overexpressing cell line, NRK-52E. <b><i>Results:</i></b> Compared with the UUO group, both PFD and Olm inhibited renal tubular dilation, diffused epithelial cell degeneration and necrosis, and reduced renal interstitial edema, inflammatory cell infiltration, and collagen fiber deposition, while no significant difference between PFD group and Olm group. Informatics-based approaches identified Smad7 as a likely candidate for regulation by miR-21. Compared with the sham group, miR-21 expression was upregulated in the UUO group resulting in the downregulation of Smad7 expression due to degradation. The overexpression of miR-21 in the in vitro model downregulated Smad7 and promoted EMT and ECM accumulation. Protein levels of TGF-β1, Smad3, p-Smad3, collagen III, and α-SMA were upregulated, while E-cadherin protein was downregulated in the UUO group than in the sham group. PFD rather than Olm decreased the expression of miR-21 and increased the expression level of Smad7 mRNA and then inhibited the TGF-β1/Smad3 signaling pathway. Olm only downregulated the TGF-β1/Smad3 signaling pathway. <b><i>Conclusions:</i></b> PFD improves TIF by downregulating the expression of miR-21, then elevating Smad7, and finally inhibiting the activation of the TGF-β1/Smad3 signaling pathway in UUO rats.

Publisher

S. Karger AG

Reference29 articles.

1. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011 Oct 18;7(12):684–96. .

2. Sheng L, Zhuang S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front Physiol. 2020;11:569322. .

3. Chung S, Overstreet JM, Li Y, Wang Y, Niu A, Wang S, et al. TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. JCI insight. 2018 Nov 2;3(21):e123563.

4. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018 Feb 10;80:309–26. .

5. Song MK, Lee JH, Ryoo IG, Lee SH, Ku SK, Kwak MK. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation. Free Radic Biol Med. 2019 Jul;138:33–42.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3