Mismatch Repair Deficiency Drives Durable Complete Remission by Targeting Programmed Death Receptor 1 in a Metastatic Luminal Breast Cancer Patient

Author:

Fremd Carlo,Hlevnjak Mario,Zapatka Marc,Zoernig Inka,Halama Niels,Fejzibegovic Nino,Thewes Verena,Lichter Peter,Schirmacher Peter,Kloor Matthias,Marmé Frederik,Schütz Florian,Kosaloglu Zeynep,Sinn Hans Peter,Jäger Dirk,Schneeweiss Andreas

Abstract

Background: In the field of breast cancer tumor biology, triple-negative breast cancer patients are the main focus of current clinical trials exploring the use of immune checkpoint inhibitors due to higher frequencies of somatic mutations, neoantigens, and resulting tumor-specific T-cell reactivity. Case Report: Here, we present the case of a 66-year-old woman with metastatic luminal breast cancer that rapidly responded to monotherapy with pembrolizumab, a monoclonal anti-PD-1 antibody. This patient obtained a partial clinical response within the first cycle of treatment and an ongoing durable complete remission after 12 weeks. Except for a transient immune-related thyreoiditis, there were no side effects observed offering remarkable quality of life to the patient. To evaluate the underlying mechanisms, we performed immunohistochemistry, explored the mutational landscape by whole-exome sequencing, and identified potential T-cell epitopes by prediction of neoantigens with high affinity binding to one of the patient's HLA. Briefly, we found a strong infiltration of CD8+ T cells without staining for PD-L1 in the tumor stroma. Exome sequencing revealed an enormous frequency of somatic and tumor-specific alterations, mainly C>T/G>A transitions. The mutational pattern was further linked to genome instability and deficient mismatch repair supported by the loss of MSH6 protein expression and therefore leading to susceptibility to immune checkpoint blockade. Conclusion: Within the overall goal to establish operating procedures for breast cancer immunotherapy, we propose to re-evaluate testing for deficient mismatch repair and to further intensify the search for biomarkers predictive for the success of immune checkpoint modulation including all tumor biologic subtypes of breast cancer.

Publisher

S. Karger AG

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3