Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing

Author:

Sesta Antonella,Cassarino Maria Francesca,Terreni Mariarosa,Ambrogio Alberto G.,Libera Laura,Bardelli Donatella,Lasio Giovanni,Losa Marco,Pecori Giraldi Francesca

Abstract

Background: Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have recently been shown to occur in ACTH-secreting pituitary adenomas, thus calling attention to the ubiquitin system in corticotrope adenomas. Objectives: Assess the consequences of USP8 mutations and establish the role of ubiquitin on ACTH turnover in human ACTH-secreting pituitary adenomas. Methods: USP8 mutation status was established in 126 ACTH-secreting adenomas. Differences in ACTH secretion and POMC expression from adenoma primary cultures and in microarray gene expression profiles from archival specimens were sought according to USP8 sequence. Ubiquitin/ACTH coimmunoprecipitation and incubation with MG132, a proteasome inhibitor, were performed in order to establish whether ubiquitin plays a role in POMC/ACTH degradation in corticotrope adenomas. Results: USP8 mutations were identified in 29 adenomas (23%). Adenomas presenting USP8 mutations secreted greater amounts of ACTH and expressed POMC at higher levels compared to USP wild-type specimens. USP8 mutant adenomas were also more sensitive to modulation by CRH and dexamethasone in vitro. At microarray analysis, genes associated with endosomal protein degradation and membrane components were downregulated in USP8 mutant adenomas as were AVPR1B, IL11RA, and PITX2. Inhibition of the ubiquitin-proteasome pathway increased ACTH secretion and POMC itself proved a target of ubiquitylation, independently of USP8 sequence status. Conclusions: Our study has shown that USP8 mutant ACTH-secreting adenomas present a more “typical” corticotrope phenotype and reduced expression of several genes associated with protein degradation. Further, ubiquitylation is directly involved in intracellular ACTH turnover, suggesting that the ubiquitin-proteasome system may represent a target for treatment of human ACTH-secreting adenomas.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3