Remodeling of Noncrosslinked Acellular Dermal Matrices in a Rabbit Model of Ventral Hernia Repair

Author:

Pascual Gemma,Sotomayor Sandra,Adel Farah,Pérez-Köhler Bárbara,Rodríguez Marta,Cifuentes Alberto,Bellón Juan M.

Abstract

Background: Bioprostheses represent a significant advance in the abdominal wall reconstruction since they become degraded until their complete elimination in the recipient organism. This study examines remodeling in the host of three noncrosslinked porcine dermal collagen biomeshes: Strattice™ (St; LifeCell Corp.), XCM Biologic® Tissue Matrix (XCM; Synthes CMF) and Protexa® (Pr; Deco Med S.R.L.). Methods: Partial ventral hernia defects created in New Zealand White rabbits were repaired using the biomeshes that were placed in an inlay, preperitoneal position. At 14 and 90 days after implantation, explants were assessed in terms of their host tissue incorporation by morphological studies, collagen gene/protein expression (quantitative real-time PCR/immunofluorescence), macrophage response (immunohistochemistry) and biomechanical strength. Results: There were no cases of mortality or infection. Among our macroscopic findings, the mesh detachment detected in one third of the Pr implants at 90 days was of note. The host tissue response to all the biomeshes was similar at both time points, with a tendency observed for their encapsulation. There were no appreciable signs of mesh degradation. The extent of host tissue infiltration and collagenization was greater for St and Pr than for XCM. Macrophages were observed in zones of inflammation and tissue infiltration inside the mesh. XCM showed a greater macrophage response at 90 days (p < 0.05). Improved tensile strength was observed for St (p < 0.05) over Pr and unrepaired defects. Conclusions:St showed the best behavior, featuring good collagenization and tensile strength while also inducing a minimal foreign body reaction.

Publisher

S. Karger AG

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3