Total Flavonoids of Polygala fallax Hemsl Induce Apoptosis of Human Ectopic Endometrial Stromal Cells through PI3K/AKT/Bcl-2 Signaling Pathway

Author:

Zhong Chuanmei,Ju Gongchenhao,Yang Sufang,Zhao xiangpeiORCID,Chen Jixiang,Li Ning

Abstract

Objective: The objective of this study was to explore the inhibitory effect of total flavonoids of Polygala fallax Hemsl (PFHF) on human ectopic endometrial stromal cells (HEcESCs) and its mechanism. Design: The apoptosis, cell cycle, migration, and invasion ability of HEcESCs (Fresh human ovarian endometriosis tissue was used for primary culture) after PFHF treatment were detected, and the mechanism of action was explored. Materials: The Polygala fallax Hemsl (PFH), RPMI 1640 culture medium, Dulbecco’s modified Eagle’s medium (DMEM)/F-12, fetal bovine serum, penicillin/streptomycin, cell counting kit-8 (CCK-8) kit, trypsin, phenylmethylsulfonyl fluoride, radioimmunoprecipitation assay tissue/cell lysate, bicinchoninic acid protein concentration detection kits, protein loading buffer, the apoptosis and cell cycle extraction kits, the matrix glue, TRIzol Universal Reagent, the reverse transcription kit, AB HS Green qPCR Mix, the ECL chromogenic solution, enzyme labeling instrument, flow cytometry, automatic real-time fluorescence quantitative PCR instrument, Goat anti-rabbit, rabbit anti-β-actin, vimentin, phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), Bcl-extra long (Bcl-xl), Bcl-2 associated death promoter (Bad) antibody, Alexa Fluor 594-labeled secondary antibody, the inverted microscope, the constant temperature carbon dioxide cell incubator. Setting: Five parts included introduction, materials and methods, results, discussion, and conclusion. Methods: The potential targets and pathways of PFHF in the treatment of endometriosis were predicted by network pharmacology. The effect of PFHF on the proliferation, apoptosis and cell cycle, migration, and invasion of HEcESCs was detected by CCK-8 method, flow cytometry, and Transwell chamber experiment. Label-free quantitative proteomics based on mass spectrometry was used to analyze the protein mass spectrum of differential expression of HEcESCs before and after PFHF, and the biological information was analyzed. The effects of PFHF on the mRNA and protein expression of pathway-related genes predicted in HEcESCs were detected by reverse transcription-quantitative polymerase chain reaction and Western blotting. Results: The network pharmacology predicts that PFHF treats endometriosis through PI3K/AKT signaling pathway. Compared with control group (DMEM/F-12 medium alone), the high dose PFHF can significantly reduce the viability, migration, and invasion of HEcESCs, increase the apoptosis rate of HEcESCs, and make the HEcESCs accumulated in G0/G1 phase in a time- and dose-dependent manner (p < 0.05). The analysis of label-free quantitative proteomics indicated that PFHF flavonoids may induce apoptosis of EESCs through PI3K/AKT signaling pathway. The results of RT-qPCR and Western blotting showed that the expressions of PI3K, AKT, Bcl-2, and Bcl-xl were significantly downregulated, while the bad expression was upregulated in HEcESCs treated with PFHF (p < 0.05). Limitations: This research investigated the effects of PFHF on the stromal endometriotic cells only. So it is unknown how PFHF can affect the entire endometriotic lesion. And the research is carried out in vitro, which gives no impression about the bioavailability of the flavonoids. Conclusion: PFHF reduces the expression of PI3K, AKT, Bcl-2, and Bcl-xl through the PI3K/AKT/Bcl-2 signaling pathway to inhibit HEcESCs proliferation, migration, and invasion and promote their apoptosis.

Publisher

S. Karger AG

Subject

Obstetrics and Gynecology,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3