Self-Standing Photo-Crosslinked Hydrogel Construct: in vitro Microphysiological Vascular Model

Author:

Manigandan Amrutha,Amruthavarshini R Preethy,Sethuraman Swaminathan,Subramanian Anuradha

Abstract

Modeling of the human vascular microphysiological system (MPS) has gained attention due to precise prediction of drug response and toxicity during drug screening process. Developing a physiologically equivalent vascular MPS still remains complex as it demands the recapitulation of dynamic structural and biological microenvironment similar to native vasculature. Hence, an ideal MPS would involve developing perfusable 3D in vitro models with multilayered human vascular cells encapsulated in a matrix to regulate the vascular tone resembling the native. Several attempts to model such anatomically accurate physiological and pathological blood vessels often fail to harmonize the essential vascular microenvironment. For instance, conventional microfluidic-based approaches employed for vascular MPS, though offering creation of perfusable channel, do not replicate the vascular hierarchical cellular arrangement due to planar geometry and confluent monolayered cell seeding. Also, recent advances with 3D biofabrication strategies are still limited by fabrication of small-diameter constructs and scalability besides post-processing techniques that indirectly distort the structural integrity of the hydrogel tubular constructs. These existing limitations toward fabricating a relevant vascular MPS demand a facile and mechanically stable construct. Hence, the present study is aimed toward developing a stable viable self-standing perfusable hydrogel construct by a rapid and scalable strategy toward vascular MPS application. The fabricated tubular constructs were found to be structurally stable with end-to-end perfusability exhibiting their potential as self-standing perfusable structures. Also, the construct exhibited nonhemolytic behavior with perfusion of red blood cells inside the luminal channel. The present study evidences creation of a dual-crosslinked stable, viable self-standing hydrogel construct with multilayered homogenous distribution of viable smooth muscle cells throughout the construct, thereby demonstrating its applicability as a promising 3D in vitro vascular microphysiological system.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Reference17 articles.

1. Araiza-Verduzco F, Rodríguez-Velázquez E, Cruz H, Rivero IA, Acosta-Martínez DR, Pina-Luis G, et al. Photocrosslinked Alginate-Methacrylate Hydrogels with Modulable Mechanical Properties: Effect of the Molecular Conformation and Electron Density of the Methacrylate Reactive Group. Materials (Basel). 2020;13(3):534.

2. Barac A, Campia U, Panza JA. Methods for evaluating endothelial function in humans. Hypertension. 2007;49(4):748–60.

3. Desai RM, Koshy ST, Hilderbrand SA, Mooney DJ, Joshi NS. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials. 2015;50:30–7.

4. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–18.

5. Fitzsimmons RE, Aquilino MS, Quigley J, Chebotarev O, Tarlan F, Simmons CA. Generating vascular channels within hydrogel constructs using an economical open-source 3D bioprinter and thermoreversible gels. Bioprinting. 2018;9:7–18.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Importance of Being Significant: “Monoclonal Gammopathies of Neurological Significance”;Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques;2021-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3