Establishment of a Systemic Inflammatory Response Syndrome Model and Evaluation of the Efficacy of Umbilical Cord Mesenchymal Stem Cell Transplantation

Author:

Ruan Guang-ping,Yao Xiang,Mo Ping,Wang Kai,Yang Zai-ling,Tian Ni-ni,Liu-Gao Mi-yang,Wang Jin-xiang,Cai Xue-min,Li Zi-an,Pang Rong-qing,Pan Xing-hua

Abstract

Based on the characteristics of modern weapon injury, a repetitive model of traumatic systemic inflammatory response syndrome (SIRS) and an evaluation system were established. The models were treated with GFP-labeled tree shrew umbilical cord mesenchymal stem cells (UCMSCs). Forty out of 50 tree shrews were used to make a unilateral femoral comminuted fracture. Lipopolysaccharide was injected intravenously to create a traumatic SIRS model. The other 10 shrews were used as normal controls. After the model was established for 10 days, 20 tree shrews were injected intravenously with GFP-labeled UCMSCs, and 18 tree shrews were not injected as the model control group. The distribution of GFP-labeled cells in vivo was measured at 2 and 10 days after injection. Twenty days after treatment, the model group, the normal control group, and the treatment group were taken to observe the pathological changes in each tissue, and blood samples were taken for the changes in liver, renal, and heart function. Distribution of GFP-positive cells was observed in all tissues at 2 and 10 days after injection. After treatment, the HE staining results of the treatment group were close to those of the normal group, and the model group had a certain degree of lesions. The results of liver, renal, and heart function tests in the treatment group were returned to normal, and the results in the model group were abnormally increased. UCMSCs have a certain effect on the treatment of traumatic SIRS and provide a new technical solution for modern weapon trauma treatment.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Reference18 articles.

1. Anderson SL, Singh B. Neutrophil apoptosis is delayed in an equine model of colitis: Implications for the development of systemic inflammatory response syndrome. Equine Vet J. 2017 May;49(3):383–8.

2. Cao J, Yang EB, Su JJ, Li Y, Chow P. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol. 2003 Jun;32(3):123–30.

3. Del Sorbo L, Slutsky AS. Acute respiratory distress syndrome and multiple organ failure. Curr Opin Crit Care. 2011 Feb;17(1):1–6.

4. Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. Genome of the Chinese tree shrew. Nat Commun. 2013;4:1426.

5. Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med. 2016 Oct;5(10):1425–39.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3