Neonatal Rats Exhibit a Predominantly Anti-Inflammatory Response following Spinal Cord Injury

Author:

Sutherland Theresa C.,Ricafrente Alison,Gomola Katarina,O’Brien Bronwyn A.,Gorrie Catherine A.ORCID

Abstract

It has been reported that children may respond better than adults to a spinal cord injury (SCI) of similar severity. There are known biomechanical differences in the developing spinal cord that may contribute to this “infant lesion effect,” but the underlying mechanisms are unknown. Using immunohistochemistry, we have previously demonstrated a different injury progression and immune cell response after a mild thoracic contusion SCI in infant rats, as compared to adult rats. Here, we investigated the acute inflammatory responses using flow cytometry and ELISA at 1 h, 24 h, and 1 week after SCI in neonatal (P7) and adult (9 weeks) rats, and locomotor recovery was examined for 6 weeks after injury. Adult rats exhibited a pronounced pro-inflammatory response characterized by neutrophils and M1-like macrophage infiltration and Th1 cytokine secretion. Neonatal rats exhibited a decreased pro-inflammatory response characterized by a higher proportion of M2-like macrophages and reduced Th1 cytokine responses, as compared to adults. These results suggest that the initial inflammatory response to SCI is predominantly anti-inflammatory in very young animals.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Reference56 articles.

1. Apple DF Jr, Anson CA, Hunter JD, Bell RB. Spinal cord injury in youth. Clin Pediatr (Phila). 1995 Feb;34(2):90–5.

2. Parent S, Mac-Thiong JM, Roy-Beaudry M, Sosa JF, Labelle H. Spinal cord injury in the pediatric population: a systematic review of the literature. J Neurotrauma. 2011 Aug;28(8):1515–24.

3. Stelzner DJ, Weber ED, Prendergast J. A comparison of the effect of mid-thoracic spinal hemisection in the neonatal or weanling rat on the distribution and density of dorsal root axons in the lumbosacral spinal cord of the adult. Brain Res. 1979;172(3):407–26.

4. Saunders NR, Deal A, Knott GW, Varga ZM, Nicholls JG. Repair and recovery following spinal cord injury in a neonatal marsupial (Monodelphis domestica). Clin Exp Pharmacol Physiol. 1995;22(8):518–26.

5. Brown KM, Wolfe BB, Wrathall JR. Rapid functional recovery after spinal cord injury in young rats. J Neurotrauma. 2005 May;22(5):559–74.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3