Author:
Li Xianqing,Li Zongzhe,Wang Dao Wen Wen,Wang Dao Wu,Wang Yan
Abstract
Brugada syndrome (BrS) is a known cause of sudden cardiac death (SCD) characterized by abnormal electrocardiograms and fatal arrhythmias. The variants in KCND3 encoding the KV4.3 potassium-channel (the α-subunit of the Ito) have seldom been reported in BrS. This study aimed to identify novel KCND3 variants associated with BrS and elucidate BrS pathogenesis. High-depth targeted sequencing was performed and the electrophysiological properties of the variants were detected by whole-cell patch-clamp methods in a cultured-cell expressing system. The transcriptional levels of KV4.3 in different genotypes were studied by real-time PCR. Western blot was used to assess channel protein expression. A novel KCND3heterozygous variant, c.1292G>A (Arg431His, R431H), was found in the proband. Whole-cell patch-clamp results revealed a gain-of-function phenotype in the variant, with peak Ito current density increased and faster recovery from inactivation. The expression of mutant Kv4.3 membrane protein increased and the cytoplasmic protein decreased, demonstrating that the membrane/cytoplasm ratio was significantly different. In conclusion, a novel KCND3 heterozygous variant was associated with BrS. The increased Ito current explained the critical role of KCND3 in the pathogenesis of BrS. Genetic screening for KCND3 could be useful for understanding the pathogenesis of BrS and providing effective risk stratification in the clinic.
Subject
Pharmacology (medical),Cardiology and Cardiovascular Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献