Participation of Antidiuretic Hormone (ADH) in Asthma Exacerbations Induced by Psychological Stress via PKA/PKC Signal Pathway in Airway-Related Vagal Preganglionic Neurons (AVPNs)

Author:

Hou Lili,Zhu Lei,Zhang Min,Zhang Xingyi,Zhang Guoqing,Liu Zhenwei,Li Qiang,Zhou Xin

Abstract

Aims: Present study was performed to examine whether ADH was implicated in psychological stress asthma and to explore the underlying molecular mechanism. Methods: We not only examined ADH levels in the cerebrospinal fluid (CSF) via radioimmunoassay, but also measured ADH receptor (ADHR) expression in airway-related vagal preganglionic neurons (AVPNs) through real-time PCR in all experimental mice. Western blotting was performed to evaluate the relationship between ADH and PKA/PKC in psychological stress asthma. Finally, the role of PKA/PKC in psychological stress asthma was analyzed. Results: Marked asthma exacerbations were noted owing to significantly elevated levels of ADH and ADHR after psychological stress induction as compared to OVA alone (asthma group). ADHR antagonists (SR-49095 or SR-121463A) dramatically lowered higher protein levels of PKAα and PKCα induced by psychological stress as compared to OVA alone, suggesting the correlation between ADH and PKA/PKC in psychological stress asthma. KT-5720 (PKA inhibitor) and Go-7874 (PKC inhibitor) further directly revealed the involvement of PKA/PKC in psychological stress asthma. Some notable changes were also noted after employing PKA and PKC inhibitors in psychological stress asthma, including reduced asthmatic inflammation (lower eosinophil peroxidase (EPO) activity, myeloperoxidase (MPO) activity, immunoglobulin E (IgE) level, and histamine release), substantial decrements in inflammatory cell counts (eosinophils and lymphocytes), and decreased cytokine secretion (IL-6, IL-10, and IFN-γ), indicating the involvement of PKA/PKC in asthma exacerbations induced by psychological stress. Conclusion: Our results strongly suggested that ADH participated in psychological stress-induced asthma exacerbations via PKA/PKC signal pathway in AVPNs.

Publisher

S. Karger AG

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3