The Protective Effect of Notoginsenoside R1 on Isoflurane-Induced Neurological Impairment in the Rats via Regulating miR-29a Expression and Neuroinflammation

Author:

Wang Meijing,Liu Hongyan,Xu Lufeng,Li Mengmeng,Zhao Ming

Abstract

<b><i>Introduction:</i></b> Isoflurane inhalation leads to apoptotic neurodegeneration and further results in learning and cognitive dysfunction. Notoginsenoside R1 (NGR1), a major ingredient from Radix notoginseng, has been reported to exert neuroprotective effect during brain or neuron injury. This study aimed to investigate the effect of NGR1 on neurological impairment. <b><i>Methods:</i></b> Sixty-four male Sprague Dawley rat pups (15–20 g) of postnatal day 7 were recruited. Spatial learning and memory were assessed by the Morris water maze test, and the neurological severity score was determined. Real-time quantitative PCR was used to detect the expression levels of microRNA (miR)-29a. Enzyme-linked immunosorbent assay was applied to estimate the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the hippocampal tissues. <b><i>Results:</i></b> NGR1 attenuated neurological impairment induced by isoflurane, shown by the decrease in neurological function score and escape latency and the increase in staying time in the original quadrant in rats. NGR1 reversed the downregulation of miR-29a expression induced by isoflurane treatment. After the treatment of NGR1, the elevated levels of IL-6, TNF-α, and IL-1β induced by isoflurane were all decreased significantly in the hippocampal tissues of rats. Additionally, the repressive action of NGR1 in neurological impairment and neuroinflammation was eliminated by downregulating miR-29a in rats. <b><i>Conclusion:</i></b> NGR1 protects against isoflurane-induced neurological impairment. The protective effect of NGR1 might be achieved by promoting the expression of miR-29a and preventing inflammatory response.

Publisher

S. Karger AG

Subject

Endocrine and Autonomic Systems,Neurology,Endocrinology,Immunology

Reference38 articles.

1. Zhao Y, Liang G, Chen Q, Joseph DJ, Meng Q, Eckenhoff RG, et al. Anesthetic-induced neurodegeneration mediated via inositol 1,4,5-trisphosphate receptors. J Pharmacol Exp Ther. 2010 Apr;333(1):14–22.

2. Wang Q, Liang G, Yang H, Wang S, Eckenhoff MF, Wei H. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington’s disease. Toxicol Appl Pharmacol. 2011 Feb 1;250(3):291–8.

3. Ma D, Williamson P, Januszewski A, Nogaro MC, Hossain M, Ong LP, et al. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007 Apr;106(4):746–53.

4. Peng L, Xu L, Ouyang W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One. 2013;8(11):e79624.

5. Johnson SA, Young C, Olney JW. Isoflurane-induced neuroapoptosis in the developing brain of nonhypoglycemic mice. J Neurosurg Anesthesiol. 2008 Jan;20(1):21–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3