Transcription Factor ATF3 Mediating SOCS3 Expression Aggravates Renal Ischemia-Reperfusion Injury by Activating Mitophagy

Author:

Luo Yu,Cai Zhitao,Wu Xiongfei,Liu Feng,Li Lian

Abstract

<b><i>Introduction:</i></b> Suppressor of cytokine signaling 3 (SOCS3) is highly expressed in mice with renal ischemia/reperfusion (RI/R) injury and has the potential to regulate mitophagy. On this basis, this study further investigates the possible mechanism via which SOCS3 affects RI/R by regulating mitophagy. <b><i>Method:</i></b> After establishing a RI/R injury mouse model and a hypoxia/reoxygenation (H/R) cell model, the effects of silenced SOCS3 on injury and mitophagy in the above models were analyzed by ELISA, quantitative real-time polymerase chain reaction, Western blot, pathological sections, CCK-8 assay, flow cytometry, and JC-1 assay. Mechanistic studies were carried out with the help of database analysis and binding validation experiments (chromatin immunoprecipitation, dual-luciferase reporter assay, and co-immunoprecipitation). After the binding target was identified, the regulatory relationship between the target gene and SOCS3 was verified by rescue experiments. <b><i>Result:</i></b> The large increase in blood urea nitrogen (BUN) and creatinine (Cr) levels verified the success of the RI/R model. SOCS3 expression was up-regulated in RI/R mice. Silenced SOCS3 alleviated kidney damage and mitochondrial abnormalities in RI/R mice and inhibited mitophagy at the molecular level. Likewise, silenced SOCS3 alleviated H/R-induced cell damage and mitophagy. Finally, activating transcription factor 3 (ATF3) was determined to bind to the promoter of SOCS3, which interacted with insulin-like growth factor 1 receptor (IGF1R). Rescue experiments confirmed the effect of ATF3 on SOCS3 expression and the underlying regulatory mechanism. <b><i>Conclusion:</i></b> ATF3 mediates SOCS3 expression to promote the activation of mitophagy, thereby aggravating renal ischemia-reperfusion injury.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3