Radiogenomic Associations Clear Cell Renal Cell Carcinoma: An Exploratory Study

Author:

Liu Derek H,Dani Komal A,Reddy Sharath S,Lei Xiaomeng,Demirjian Natalie L,Hwang Darryl H,Varghese Bino A,Rhie Suhn Kyong,Yap Felix Y.ORCID,Quinn David I.ORCID,Siddiqi Imran,Aron Manju,Vaishampayan Ulka,Zahoor Haris,Cen Steven Y,Gill Inderbir S,Duddalwar Vinay A

Abstract

Introduction: This study investigates how quantitative texture analysis can be used to non-invasively identify novel radiogenomic correlations with clear cell renal cell carcinoma (ccRCC) biomarkers. Methods: The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma open-source database was used to identify 190 sets of patient genomic data that had corresponding multiphase contrast-enhanced CT images in The Cancer Imaging Archive. 2,824 radiomic features spanning fifteen texture families were extracted from CT images using a custom-built MATLAB software package. Robust radiomic features with strong inter-scanner reproducibility were selected. Random forest, AdaBoost, and elastic net machine learning (ML) algorithms evaluated the ability of the selected radiomic features to predict the presence of 12 clinically relevant molecular biomarkers identified from the literature. ML analysis was repeated with cases stratified by stage (I/II vs. III/IV) and grade (1/2 vs. 3/4). 10-fold cross validation was used to evaluate model performance. Results: Before stratification by tumor grade and stage, radiomics predicted the presence of several biomarkers with weak discrimination (AUC 0.60–0.68). Once stratified, radiomics predicted KDM5C, SETD2, PBRM1, and mTOR mutation status with acceptable to excellent predictive discrimination (AUC ranges from 0.70 to 0.86). Conclusions: Radiomic texture analysis can potentially identify a variety of clinically relevant biomarkers in patients with ccRCC and may have a prognostic implication.

Publisher

S. Karger AG

Subject

Cancer Research,Oncology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3