Developing Fibrous Biomaterials to Modulate Epithelial to Mesenchymal Transition

Author:

Blake Beth,Ozdemir Tugba

Abstract

Despite their critical roles in tissue repair and pathological processes such as fibrosis, tumor invasion and metastasis, the origins of mesenchymal cells remain poorly understood. Among the likely routes, epithelial to mesenchymal transitions (EMTs) emerge as important source of these cells. EMTs manifests themselves as a phenotypic transition in terminally differentiated epithelial cells into mesenchymal cells which is closely related to embryogenesis and organ development as well as in chronically inflamed tissues and neoplasia. There exists a potential for successful engineering of biomimetic environments that closely reflects and reciprocates the dynamic changes in the cellular microenvironment during EMT and relies on integrating the mechanical sensing mechanisms found in the native tissues into the synthetic scaffolds to understand cellular plasticity. Extracellular matrix (ECM) has complex structures composed of a collection of extracellular molecules including fibrous proteins and glycoproteins in a hydrated mixture of glycosaminoglycans and proteoglycans. Therefore, fibrous materials have been increasingly applied in tissue engineering applications since biomaterials need to restore ECM structures to provide physical, biochemical and biomechanical signals to define cellular behaviors and tissue functions. This review summarizes materials used for fibrous scaffolds including natural and synthetic materials, highlights recent development of fabrication techniques, characteristic architectures and properties and different applications of fibrous scaffolds in tissue engineering. The prospects and challenges about fibrous materials in tissue engineering applications are also discussed. Finally, we summarized relevant bioengineering approaches to modulate each type of EMT as potential avenues to consider towards future biomaterials design.

Publisher

S. Karger AG

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3