Author:
Zhang Qi,Wang Xiang,Yan Guifang,Lei Juan,Zhou Yu,Wu Lei,Wang Ting,Zhang Xiao,Ye Duyun,Li Yongsheng
Abstract
Background/Aims: This study aimed to explore the metabololipidome in mice upon cupping treatment. Methods: A nude mouse model mimicking the cupping treatment in humans was established by administrating four cupping sets on the back skin for 15 minutes. UPLC-MS/ MS was performed to determine the PUFA metabolome in mice skin and blood before and after cupping treatment. The significantly changed lipids were administered in macrophages to assess the production of pro-inflammatory cytokines IL-6 and TNF-α by ELISA. Results: The anti-inflammatory lipids, e.g. PGE1, 5,6-EET, 14,15-EET, 10S,17S-DiHDoHE, 17R-RvD1, RvD5 and 14S-HDoHE were significantly increased while pro-inflammatory lipids, e.g. 12-HETE and TXB2 were deceased in the skin or plasma post cupping treatment. Cupping treatment reversed the LPS-stimulated IL-6 and TNF-α expression in mouse peritoneal exudates. Moreover, 5,6-EET, PGE1 decreased the level of TNF-α, while 5,6-EET, 5,6-DHET downregulated IL-6 production in macrophages. Importantly, 14,15-EET and 14S-HDoHE inhibited both IL-6 and TNF-α induced by lipopolysaccharide (LPS). 17-RvD1, RvD5 and PGE1 significantly reduced the LPS-initiated TNF-α, while TXB2 and 12-HETE further upregulated the LPS-enhanced IL-6 and TNF-α expression in macrophages. Conclusion: Our results reveal the identities of anti-inflammatory versus pro-inflammatory metabolipidome and suggest the potential therapeutic mechanism of cupping treatment.