The Interaction of N-Acetylcysteine and Serum Transferrin Promotes Bacterial Biofilm Formation

Author:

Yin Supeng,Jiang Bei,Huang Guangtao,Zhang Yulong,You Bo,Chen Yu,Gong Yali,Chen Jing,Yuan Zhiqiang,Zhao Yan,Li Ming,Hu Fuquan,Yang Zichen,Peng Yizhi

Abstract

Background/Aims: N-acetylcysteine (NAC) is a novel and promising agent with activity against bacterial biofilms. Human serum also inhibits biofilm formation by some bacteria. We tested whether the combination of NAC and human serum offers greater anti-biofilm activity than either agent alone. Methods: Microtiter plate assays and confocal laser scanning microscopy were used to evaluate bacterial biofilm formation in the presence of NAC and human serum. qPCR was used to examine expression of selected biofilm-associated genes. Extracellular matrix (ECM) was observed by transmission electron microscopy. The antioxidants GSH or ascorbic acid were used to replace NAC, and human transferrin, lactoferrin, or bovine serum albumin were used to replace serum proteins in biofilm formation assays. A rat central venous catheter model was developed to evaluate the effect of NAC on biofilm formation in vivo. Results: NAC and serum together increased biofilm formation by seven different bacterial strains. In Staphylococcus aureus, expression of genes for some global regulators and for genes in the ica-dependent pathway increased markedly. In Pseudomonas aeruginosa, transcription of las, the PQS quorum sensing (QS) systems, and the two-component system GacS/GacA increased significantly. ECM production by S. aureus and P. aeruginosa was also enhanced. The potentiation of biofilm formation is due mainly to interaction between NAC and transferrin. Intravenous administration of NAC increased colonization by S. aureus and P. aeruginosa on implanted catheters. Conclusions: NAC used intravenously or in the presence of blood increases bacterial biofilm formation rather than inhibits it.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3