The Quantitative Genetics of Human Disease: 2 Polygenic Risk Scores

Author:

Cutler David J.1,Jodeiry Kiana2,Bass Andrew J.1,Epstein Michael P.1

Affiliation:

1. Department of Human Genetics, Emory University, Atlanta, GA 30322, USA

2. Center of Computational and Quantitative Genetics, Emory University, Atlanta, GA 30322, USA

Abstract

In this the second of an anticipated four papers, we examine polygenic risk scores from a quantitative genetics perspective. In its most simplistic form, a polygenic risk score (PRS) analysis involves estimating the genetic effects of alleles in one study and then using those estimates to predict phenotype in another sample of individuals. Almost since the first application of these types of analyses it has been noted that PRSs often give unexpected and difficult-to-interpret results, particularly when applying effect-size estimates taken from individuals with ancestry very different than those to whom it is applied (applying PRSs across differing populations). To understand these seemingly perplexing observations, we deconstruct the effects of applying valid statistical estimates taken from one population to another when the two populations have differing allele frequencies at the sites contributing effect, when alleles with effects in one population are absent from the other, and finally when there is differing linkage disequilibrium (LD) patterns in the two populations. It will be shown that many of the seemingly most confusing results in the field are natural consequences of these factors. Given our best current understanding of human demographic history, most of the patterns seen in PRS analysis can be predicted as resulting from systematic differences in allele frequency and LD. Put the other way around, the most challenging and confusing results seen in cross population application of PRSs are likely to be the result of allele frequency and LD differences, not differences in the genetic effects of individual alleles. PRS analysis is an important tool both for understanding the genetic basis of complex phenotypes and, potentially, for identifying individuals at risk of developing disease before such disease manifests. As such it has the potential to be among the most important analysis frameworks in human genetics. Nevertheless, when a PRS is trained in people with one ancestry and then applied to people with another, the PRS’s behavior is often unpredictable, and sometimes is seemingly perverse. PRS distributions are often nearly non-overlapping between individuals with differing ancestry, i.e., odds ratios for unaffected people with one ancestry might be vastly larger than affected individuals from another. The correlation between a PRS and known phenotype might differ substantially, and sometimes the correlation is higher among people with ancestry different than the one used to create the PRS. Naively, one might conclude from these observations that the genetic basis of traits differs substantially among people of differing ancestry, and that the behavior of a PRS is difficult to predict when applied to new study populations. Differing definitions of genetic effect sizes are discussed, and key observations are made. It is shown that when populations differ in allele frequency, a locus affecting phenotype could have equal differences in allelic (additive) effects or equal additive variances, but not both. They cannot have equal additive effects, equal allelic penetrances, or equal odds ratios. PRS is defined, and its moments are derived. The effect of differing allele frequency and LD patterns is described. Perplexing PRS observations are discussed in light of theory and human demographic history. Suggestions for best practices for PRS construction are made. The most confusing results seen in cross population application of PRSs are often the predictable result of allele frequency and LD differences. There is relatively little evidence for systematic differences in the genetic basis of disease in individuals of differing ancestry, other than that which results from environmental, allele frequency, and LD differences.

Funder

National Institutes of Health

Publisher

Pivot Science Publications Corporation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3