Best practices to reduce methane emissions at gas transmission networks. A literature review and case studies

Author:

Tsochatzidi Artemis1,Tsochatzidis Nikolaos A.2

Affiliation:

1. Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece

2. Hellenic Gas Transmission System Operator (DESFA) SA, Halandri, GR 15231, Greece

Abstract

This paper studies methane emissions reduction at natural gas transmission systems. A literature survey on the topic is presented along with some characteristic case studies. Such case studies reveal that a significant reduction of methane emissions at gas transmission systems may be achieved with application of best practices, resulting in a large impact on decarbonization and environmental protection efforts. At a characteristic case study, the maintenance plan optimization of the scraper traps along a gas transmission network reduced methane emissions by 90%. Quantification of methane emissions reduction at the presented case studies may serve as quick reference for similar applications. The analysis aims to contribute to better understanding of methane emissions sources and the adoption of emissions reduction measures at gas transmission systems.

Publisher

Pivot Science Publications Corporation

Subject

General Medicine,General Medicine,Ocean Engineering,General Earth and Planetary Sciences,General Environmental Science,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Organic Chemistry,Biochemistry,General Earth and Planetary Sciences,General Environmental Science,General Medicine,General Medicine

Reference19 articles.

1. United Nations Environment Programme and Climate and Clean Air Coalition. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions. Nairobi: United Nations Environment Programme; 2021. ISBN: 978-92-807-3854-4.

2. Stern JP. Measurement, reporting, and verification of methane emissions from natural gas and LNG trade: Creating transparent and credible frameworks. Oxford: The Oxford Institute for Energy Studies; 2022. ISBN 978-1-78467-191-4.

3. Global Monitoring Laboratory (GML), National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce. Trends in Atmospheric Methane [Internet]. Boulder: GML, NOAA; 2023 [cited 14 May 2023]. Available from: https://gml.noaa.gov/ccgg/trends_ch4/.

4. Ocko IB, Sun T, Shindell D, Oppenheimer M, Hristov AN, Pacala SW, Mauzerall DL, Xu Y, Hamburg SP. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environ Res Lett. 2021;16:054042.

5. Cooper J, Balcombe P, Hawkes A. The quantification of methane emissions and assessment of emissions data for the largest natural gas supply chains. J Clean Prod. 2021;320:128856.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3